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water vapor was produced in high purity in the
case of full CH,, conversion. Because a sweep gas
was used, the CO in the product stream was
diluted, and a molar fraction of 0.56 rather than
0.85 was obtained. However, this is still 30%
higher than the equilibrium molar fraction of
CO in conventional dry reforming at the same
conditions (Fig. 4A). Moreover, our goal was not
to optimize the flow of sweep gas, but rather to
highlight the possibilities based on a combina-
tion of known processes. Hence, it may be pos-
sible to further increase the yield and purity of
CO by fine-tuning process variables, reactor con-
figuration, or materials. This flexibility is not evi-
dent at all for the conventional DRM process, which
is limited in yield by the WGS reaction (Eq. 2).

Exergy calculations (which account for ir-
reversible losses) were performed to estimate
the energetics of the proposed process (Fig. 4B
and fig. S23B) (20). Along with the advantage
of improved product purity, super-dry reforming
of CH, also resulted in a very low exergy de-
struction per mole CO, converted (Fig. 4B). In-
deed, the exergy destruction for CO, conversion
is up to 25 to 50% lower as compared with that
of conventional DRM. The latter typically requires
operating temperatures of 1073 to 1273 K in order
to reach high-equilibrium conversion of CH, and
CO, while minimizing the thermodynamic driving
force for carbon formation (73). Compared
with these requirements, super-dry reforming
shows both practical and economic benefits.
For one, the requirement of a noble metal cat-
alyst in order to mitigate excessive carbon for-
mation (Z3) becomes obsolete because conditions
of super-dry reforming are thermodynamically
unfavorable for carbon deposition. Hence, the
application of cheaper Ni-based catalysts is per-
fectly feasible, even at temperatures as low as
1023 K.

The product streams of super-dry reforming
have a higher purity than those of conventional
CH,, reformers, which should reduce separation
costs. Moreover, by applying Le Chatelier’s prin-
ciple to lift CO, utilization efficiency, each mole-
cule of CH,, theoretically allows the conversion of
three molecules of CO,, making super-dry re-
forming of CH, an intensified process for iso-
thermal CO, utilization. The presence of a CO,
acceptor, in this case CaO, allows for the appli-
cation of renewable feedstocks such as biogas as
a reducing agent for iron oxide reduction.
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CLIMATE DATA

Using climate models to estimate
the quality of global observational

data sets

Frangois Massonnet,”>* Omar Bellprat,'

Virginie Guemas,”® Francisco J. Doblas-Reyes™*

Observational estimates of the climate system are essential to monitoring and
understanding ongoing climate change and to assessing the quality of climate models used
to produce near- and long-term climate information. This study poses the dual and
unconventional question: Can climate models be used to assess the quality of
observational references? We show that this question not only rests on solid theoretical
grounds but also offers insightful applications in practice. By comparing four observational
products of sea surface temperature with a large multimodel climate forecast ensemble,
we find compelling evidence that models systematically score better against the most
recent, advanced, but also most independent product. These results call for generalized
procedures of model-observation comparison and provide guidance for a more objective

observational data set selection.

here is now overwhelming evidence that
Earth’s climate has changed at an unusual-
ly rapid pace during the last century, that
these changes bear a clear human signa-
ture, and that they will be enhanced if'an=
thropogenic emissions continue unabated (7). The
development of large-scale observational networks
has been a major advance to reaching such levels
of evidence. Observations of essential climate var-
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iables [e.g., sea surface temperature (SST), sea
ice extent (2)] are indeed central for the study of
climate variability (Z), for detection and attribu-
tion of human-induced climate change (7, 3), and
for constraining long-term projections (7, 4). Ma-
jor international and coordinated observing pro-
grams are currently underway to continue these
efforts (5). However, with the emergence of mul-
tiple observational references (ORs), sometimes
divergent, a natural question arises: NVITatHSIERE
underlying quality of these products? A direct
answer to this question is not easily achieved
because there is by definition no universal knowl-
edge of the true state of our climate (6).

Here we present a framework for the evalu-
ation of ORs addressing this gap. The approach
relies on the use of climate models taken as
references, and not as subjects of assessment as
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Fig. 1. A simple statisti-
cal toy model (Eq. 1) for
understanding the
dependence of correla-
tion on observational
error. (A) A true but
unknown signal e (light

°C

red) mimicking, for exam- \ Ob;ervational Climate
ple, annual mean SST 5 | True signal reference Model
anomalies over some - T T . T : T T
region is generated over 1970 1975 1980 1985 1990 1995 2000
1970 to 2000 as a white- v

ears

noise process with SD
c. = 0.8°C. An observa-

tionally based reference 10 B
(blue) systematically '
underestimating the true < 0.8+
variability (oor = 0.8) is -% 0.6
then sampled according ° ’

to Eq. 1 with SD oor = g 0.4 -
0.6°C. Finally, a climate

model estimate (green) is 0.2+
shown with multiplicative 0.0 -

p: actual correlation

~N r: sample correlation
over 1970-2000

bias acy = 0.7 and with its T
own and irreducible errors 0
having SDs ocm,p = 0.2°C
and ocym = 0.4°C, respec-

T T T T T
2 4 6 8 10

Signal-to-noise ratio of observations

tively. (B) Dependence of the linear correlation coefficient on the signal-to-noise ratio of observations yor =
6.°/00r>. The red lines show the analytical, predicted dependence (Eq. 2) and the 95% confidence
interval using Fisher's z transform (32). Gray dots are sample correlations between generated
observation and model data for different levels of observational error, keeping the true signal unchanged
[as in (A)] but each time generating a new model realization (with fixed error statistics acy = 0.7, oscmp =
0.2°C and ocpmj = 0.4°C) and an observation (aor = 0.8) while varying the SE so that a desired signal-to-

noise ratio is achieved.

Fig. 2. Systematic depen-
dence of correlation on veri-
fication product. Each dot

highlights the relationship
between the correlation of one
August SST forecast verified
against the ESA-CCI product
(y axis; product based on
satellite information only) and
the correlation of the same
forecast verified against the
ERSST4 product (x axis;
product based on in situ
information only). Reference
period is 1993 to 2009. There
are 110 forecasts in total (11
models, 10 members each).
The solid line is the 1:1 line and
delimits regions where ESA-
CClI or ERSST4 scores better.
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tions are significant at the 0.05
level (the 1-year autocorrelations
of the time series considered
are weak and not significant).

has been widely done in the past (7, 8). The ra-
tionale behind this approach relies on the so-
called “truth-plus-noise” paradigm (9-14), which
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Correlation when using ERSST4

assumes that observations and models are both
noisy versions of the true (but unknown) state
of the climate system. In that view, observations

and models playisymmetricalroles so that it is

possible to use one to estimate how close the
other is from the true state, and vice versa. In
line with this paradigm, we claim that climate
models can be appropriate tools for estimating
the quality of ORs. We accumulate the necessary
evidence in three steps. First, we rely on ElEHiens

3

z

&
5
g
B

(symmetrically to model error), turning this into
an opportunity to reverse the process of model
evaluation into one of OR evaluation. Finally, §i@

“Quality” is here measured in terms of a pri-
mary metric of performance widely used in the
climate community: the (Pearson) linear corre-
lation between two variables (Z5). Because this
metric of performance is mathematically symmet-
ric, the process of evaluation is also inherently
symmetric. Provided that this metric of perfor-
mance is appropriate to characterizing the qual-
ity of climate models or forecast systems (16-18),
it also becomes a way to measure the quality of
ORs. The same argument holds for other metrics,
provided that they respect the underlying hypo-
thesis of symmetry.

To frame this idea in a more concrete context,
consider the following simple, yet generic enough,
toy model (79) consisting of an observational ref-
erence (Xor) and model-based (X¢y,) estimate of
some true, but unknown, climate variable e:

XoRr = OoRE + Nor
Xem = ocme€ + Mewp + Nowsi

(1)

The observational reference Xoy is related to
the true signal by a multiplicative bias factor
aor > 0, that accounts, e.g., for the systematic
errors in retrieval from the raw measurement to
the final product. The OR estimate is further pol-
luted by a random error nog that reflects instru-
mental and sampling errors. Another estimate
Xc of the true variations can be obtained through
a climate model (see Fig. 1A for an example). Like
the OR, the climate model does not necessarily
capture the correct amplitude of the variability
(hence a multiplicative bias term ocy > 0 to
model, e.g., the possible incorrect response to ex-
ternal forcings) and is subject to random error
Nem,p (because of, e.g., unresolved or misrepre-
sented processes including forcings) and random
error new; due to the inherent chaotic nature of
climate dynamics and its intrinsic unpredictabil-
ity (20). All error terms are assumed to follow
Gaussian distributions with zero means and
known standard deviations. Focusing on the eval-
uation of anomalies is motivated by the fact that
constant offsets between ORs and climate model
time series are usually removed by classical linear
bias correction techniques. In that sense, we fo-
cus on the ability of ORs and climate models to
reproduce variability rather than mean states.
Finally, all error terms are assumed to be un-
correlated with each other. Under these ideal
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conditions, the actual correlation between Xor
and Xcy; follows the expression

1

p =
D S 1
\/(1 + “énYOR> ' (1 * a(ZZMYCM)

where yor and ycy denote the signal-to-noise
ratios of the observation and the model, respec-
tively (see the supplementary text for the demon-
stration of the relationship and Fig. 1B caption for
the definition of signal-to-noise ratios). The re-
lationship, displayed graphically in Fig. 1B for a
given model error level, highlights that [GbSeivas
tional and model error play exchangeable roles in
the definition of correlation: Correlation will de-
crease whenever either observational or model
EffominereasesMDespite its simplicity, the toy mod-
el illustrates two essential points: (i) Models and
ORs are two sides of the same coin and make the
process of evaluation intimately intertwined; and
(ii) model error is not the only cause of poor
model performance: DBSCIVAHONANEIONAISORCON
[EibttesIoIpooTIcotelations. Ve now investigate
this aspect in a more realistic case.

We compiled data from 11 state-of-the-art cli-
mate models for which 10-member-ensemble May
to August (4-month-long) retrospective predic-
tions of average SST in the Nifno3.4 box (120°W
to 170°W, 5°S to 5°N) were available between
1993 and 2009 (see supplementary materials for
the choice of the period and a thorough descrip-
tion of this ensemble). Unlike the toy model
presented above, forecast errors are not indepen-
dent from each other (fig. S2). Besides, we com-
puted monthly-mean SSTs in the Nifo3.4 box for
four ORs at various resolutions and based on var-
ious methods of retrieval (see supplementary ma-
terials for a complete description): ESA-CCI (~0.05°
resolution, satellite data only), ERA-Interim (~0.7°,
an atmospheric reanalysis also providing SST in-
formation), HadISST (1° based on in situ data
but interpolated with satellite data), and ERSST4
(29 in situ data only). We find that the €hoiceiof

OR used to verify the forecasts has a systematic
and nonnegligible influence on the correlation
between theforecastandthelOR (Fig. 2). All

August forecasts but one score better when
assessed against the ESA-CCI product instead
of ERSST4, and differences in correlation are com-
mensurate with changes between model versions.
For the example given in Fig. 2, the average
change in Nifo3.4 SST correlation when using
ESA-CCI instead of ERSST4 is +0.07 (minimum =
-0.02; maximum = 0.11). As a comparison, the
mean change in correlations between EC-Earth
3.0 and EC-Earth 3.1 (two model versions) is
0.05 when assessed against ESA-CCI.

To obtain a broader picture, we recorded for
each OR the number of forecasts amongst the
440 available (11 models, 10 members each, 4
months of forecasts) that reached the highest
correlation with that particular OR (Fig. 3). The
results show that forecasts, as a group, tend to
favor one particular OR (ESA-CCI), which also
happens to be the most recent, at the highest
resolution and resorting to the most advanced
technology for SST retrieval (21). In addition,

)
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none of the forecast systems uses the ESA-CCI
SST OR for initialization, postprocessing, or vali:
dation, which excludes the possibility of reaching
high correlation only by construction (22). At the
other end of the diagram lies ERSST4, the OR
that is arguably least adapted for this exercise
of SST comparison in the middle of the Pacific
Ocean, where sampling is poorer than in other
regions of the Pacific (23). It is also worth
noting that ORs that are a priori not relevant

for SST evaluation (ERA-Interim, an atmospheric
reanalysis) can score high for the wrong rea-
sons. Five of the 11 models considered are ini-
tialized with the same SST fields as those used
in ERA-Interim, making the evaluation depen-
dent through a methodological artefact. This
OR was deliberately included in our analysis
to show that high correlations are a necessary,
but not sufficient, indicator of high observa-
tional quality.

Fig. 3. Impact of the
choice of OR on the
assessment of fore-
cast quality. A total of
440 seasonal retro-
spective forecasts of
SST in the Nifio3.4 box
(11 models, 10 mem-
bers each integrated

I (+0.04) ESA-CCI
[l (+0.03) ERA-Interim
[l (+0.03) HadISST
[ (+0) ERsST4
for 4 months starting Forecast time

from 1 May) are 3m_ 4m

correlated with four T T T T I
ORs of SST for verifi- 0 100 200 300 400
cation over 1993 to
20089. For each OR, we
record the number of
times that this OR
yields the highest correlation. Numbers in parentheses before each OR indicate the average increase
in correlation when using that OR instead of ERSST4. Corresponding figures for an alternative metric
(RMSE) and an alternative test case (sea ice) can be found in the supplementary materials.

Number of forecasts with highest correlation

30S 10S 10N 30N 50N 70N

508

708

B ‘ . ]
0 20E 60E 100E 140E 300E

ESA-C!I (36%) ERA-Interim (14%) HadISS! (25%) ERRST4 (25%)

Fig. 4. Spatial distribution of observational reference quality. A total of 110 August SST forecasts
were correlated (reference period: 1993 to 2009) to four observational references (ORs, legend). For each
grid point, we display the OR that correlates best with most of the 110 forecasts. We show data only in grid
points where at least one forecast achieves a significant correlation with one OR. The black box is the
Nifio3.4 region. Regions above 70°N or below 70°S are not considered, as these regions are usually ice-
covered. The percentages below the color bar indicate the fraction of the oceans covered by each color. The
corresponding figures for other months and alternative metrics can be found in the supplementary
materials.
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depicted in Fig. 3, might be interpreted as an
accidental result. Indeed, all forecasts are highly
correlated to each other (fig. S2). If, by chance,
the first forecast of the first model correlates
better with the ESA-CCI OR, then it is likely

mance, or presented the other way around, that
better observations are generally of higher skill
when assessed against available forecasts (see
supplementary materials for details).

The reasons why ESA-CCI outperforms other
ORs in the Niflo3.4 box are difficult to trace back

formally. Indeed, the lack of information on SST

The central idea behind our contribution relies
on the symmetrical roles played by climate mod-
els and observational references as imperfect,
but complementary, sources of information about
reality. Symmetry enables one to revisit the con-
cept of climate model evaluation and to expand
it so as to simultaneously estimate the quality of
observational references. A corollary is that ORs
of higher quality will yield better skill scores to
climate models, with systematic and non-negligible
impacts on the estimated model performance.
From the modeling side, considering multiple
ORs in future model evaluation exercises such
as CMIP6 (27, 28) appears therefore as a priority.
From the observational side, quantification of un-
certainties will be vital to enable intercomparison
of ORs and to account for observational uncer-
faiffifmodelevaliation n both cases, consid-

ering climate model evaluation as a bidirectional

SCIENCE sciencemag.org

exercise (and not unidirectional as assumed by
many up to now) is essential to remember that
observations, no matter how good they appear,
are also intrinsically uncertain.
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Editor's Summary

Models and data: A two-way street

Data are used to drive models of climate and other complex systems, but is the relationship
between data and models a one-way process? Massonnet et al. used climate models to assess the
quality of the observations that such models use. Starting with a simple model and progressing to more
complex ones, the authors show that models are better when they are assessed against the most recent,
most advanced, and most independent observational references. These findings should help to evaluate
the quality of observational data sets and provide guidance for more objective data set selection.
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