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ABSTRACT

The optimal anomalous sea surface temperature (SST) pattern for forcing North American drought is

identified through atmospheric general circulation model integrations in which the response of the Palmer

drought severity index (PDSI) is determined for each of 43 prescribed localized SST anomaly ‘‘patches’’ in

a regular array over the tropical oceans. The robustness and relevance of the optimal pattern are established

through the consistency of results obtained using two different models, and also by the good correspondence

of the projection time series of historical tropical SST anomaly fields on the optimal pattern with the time

series of the simulated PDSI in separate model integrations with prescribed time-varying observed global SST

fields for 1920–2005. It is noteworthy that this optimal drought forcing pattern differs markedly in the Pacific

Ocean from the dominant SST pattern associated with El Niño–Southern Oscillation (ENSO), and also shows

a large sensitivity of North American drought to Indian and Atlantic Ocean SSTs.

1. Introduction

Droughts are among the costliest natural disasters asso-

ciated with climate variations, costing $6 billion to $8 bil-

lion (U.S. dollars) annually in global damages (Wilhite

2000; Trenberth et al. 2003). In response to increasing

public concerns about future water availability, the climate

research community is increasingly interested in under-

standing how global and regional hydrological cycles might

be affected in a changing climate (Solomon et al. 2007).

Many aspects of the North American hydroclimate

are recognized to be sensitive to changes in tropical sea

surface temperatures (SSTs), although which areas of

the tropical oceans are most critical in this regard re-

mains unclear. Some studies have highlighted the im-

portance of a cooler eastern tropical Pacific Ocean in

causing North American droughts at various times in

earth’s history [e.g., the mid-Holocene, Shin et al. (2006);

the medieval period, Seager et al. (2007); the 1930s Dust

Bowl, Schubert et al. (2004); and the current climate, Ting

and Wang (1997)], while others have also argued for a

role of Indo-Pacific warm pool (Hoerling and Kumar

2003) and tropical North Atlantic (Schubert et al. 2004)

SSTs. Recently, Schubert et al. (2009) intercompared the

North American drought responses of five atmospheric

general circulation models (GCMs) to three prescribed

global SST patterns associated with observed SST vari-

ability: a multidecadal SST trend pattern, a pan-Pacific

El Niño–Southern Oscillation (ENSO) pattern, and an

Atlantic multidecadal oscillation (AMO) pattern. Despite

some differences of detail among the model results,

Schubert et al. (2009) were able to conclude that a cold

Pacific in concert with a warm Atlantic is particularly

effective at reducing precipitation over the continental

United States.

In this study, we used observations and two atmo-

spheric GCMs to estimate the sensitivity of North Amer-

ican drought to SST changes at regularly spaced locations

throughout the tropical oceans. A map of such sensitivities

may also be interpreted as the ‘‘optimal’’ tropical SST

forcing pattern of North American drought. The GCMs

used were the National Center for Atmospheric Research
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(NCAR) atmospheric GCM community climate model

version 3 (CCM3; Kiehl et al. 1998) and the Max Planck

Institute for Meteorology (MPIM) atmospheric GCM

ECHAM5 (Roeckner et al. 2003). As a measure of

drought, we employed the widely used Palmer drought

severity index (PDSI; Palmer 1965), which is based on

a supply-and-demand model of soil moisture. The PDSI

at a particular location and time, Zn, is related to that in

the previous month, Zn21, as Zn 5 0.897Zn21 1 0.33KDn,

where K is Palmer’s ‘‘climate characteristic’’ at the lo-

cation and Dn is the local precipitation supply relative to

the expected precipitation needed to maintain a ‘‘nor-

mal’’ soil moisture level, which is a specified function of

local surface air temperature, precipitation, and water

holding capacity of the soil. The PDSI has been exten-

sively used in drought monitoring and research, from

weekly [e.g., the National Oceanic and Atmospheric

Administration (NOAA) drought monitoring site, avail-

able online at www.cpc.noaa.gov/products/monitoring_

and_data/drought.shtml] to centennial (Dai et al. 1998;

Dai et al. 2004; Wells et al. 2004) to millennial (Cook

et al. 2004) time scales.

To estimate the PDSI from observations, we used

three long-term surface air temperature and three pre-

cipitation datasets over land—the University of East

Anglia’s Climatic Research Unit (UEA CRU; Mitchell

and Jones 2005), the National Aeronautics and Space

Administration’s Goddard Institute for Space Studies

Surface Temperature Analysis (GISTEMP; Hansen

et al. 2001), and NOAA’s Merged Land, Air, and SST

(MLASST; Smith and Reynolds 2005) datasets for

surface air temperature, and the UEA CRU (Mitchell

and Jones 2005), the Global Precipitation Climatology

Centre (GPCC; Rudolf et al. 2005) and NOAA’s Na-

tional Centers for Environmental Prediction (NCEP;

Chen et al. 2002) datasets for precipitation. We also used

the near-surface (2 m) air temperature and precipitation

values from a 16-member ensemble of NCAR CCM3

simulations (Seager et al. 2005; Seager 2007, hereafter

GOGA) and from another 24-member ensemble of

MPIM ECHAM5 simulations (Roeckner et al. 2006),

both generated using prescribed time-varying observed

global SSTs over the last century as boundary condi-

tions.1 The model resolution in both sets of simulations

was T42 (;2.88 in longitude and latitude). Unless stated

otherwise, all surface observational datasets used were

also interpolated to this common T42 grid. The time

series of the observed monthly PDSI were estimated

using all nine possible combinations of temperature and

precipitation in the observational datasets, specifying

water holding capacities compiled by Webb et al. (1993)

and calibrating the PDSI model over the period 1961–

2000.

A map of the average PDSI anomalies over North

America during July 1998–June 2002, a 4-yr period of

widespread drought, is shown in Fig. 1 alongside a map

of concurrent tropical SST anomalies, both computed

relative to their 1961–2000 averages. The PDSI map

represents an unweighted average of the nine separate

observational PDSI computations. The SST anomaly map

was derived using the Met Office Hadley Centre Global

Sea Ice and Sea Surface Temperature (HadISST) data-

set (Rayner et al. 2003) at 18 3 18 resolution. It shows

a significantly cooler-than-normal tropical eastern Pa-

cific Ocean, a warmer Indo-Pacific warm pool, and a

warmer tropical North Atlantic Ocean. Each of these

features was argued in previous studies to be important

in forcing this drought episode. However, the question of

which particular feature—or combination of features—

might have been most influential in this regard was not

fully addressed.

In this study, we took both statistical and dynamical

approaches to identify the optimal tropical SST forcing

pattern of North American drought. The statistical ap-

proach was based on linear regressions. In the dynamical

approach, we analyzed our own NCAR CCM3 and

MPIM ECHAM5 simulations with idealized, steady,

and localized SST anomaly ‘‘patches’’ imposed at 43

regularly spaced tropical locations on the climatological

SST annual cycle. The locations and structures of these

SST patches are shown in Fig. 1b. At each location, the

magnitude of the prescribed area-averaged SST anom-

aly over the patch was 0.668C. For each patch in the

Indo-Pacific domain, 16-member ensemble integrations

were performed for 18 months starting 1 October, for

both warm (10.668C) and cold (20.668C) SST forc-

ing. To obtain comparable signal-to-noise ratios for the

smaller Atlantic patches, we performed 20-member en-

semble integrations for 25 months for those patches [see

Barsugli et al. (2006) for details of the experimental de-

sign]. We examine here only the linear PDSI response to

each patch, defined as one-half of the difference between

the ensemble-mean PDSI responses obtained for warm

and cold patch forcing.

2. Optimal forcing

As explained in Barsugli and Sardeshmukh (2002) and

Barsugli et al. (2006), our patch experiments may be

regarded as estimating a ‘‘fuzzy Green’s function’’ of the

global climate response to tropical SST anomalies, of

1 These model datasets are available at the data library of the

International Research Institute for Climate and Society (IRI).

The NCAR CCM3 and MPIM ECHAM5 simulations used here

were available for 1856–2007 and 1950–2004, respectively.
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which the PDSI response over North America repre-

sents only a part. Specifically, given our array of M (543)

patches and representing any tropical SST anomaly field

as an M-component vector T9dA, whose components

denote the SST anomalies at the patch locations, the scalar

area-averaged PDSI response ZR over North America to

T9dA may be expressed as

ZR5 sTT9dA 1 «,

where s is an M-component sensitivity vector of the same

dimension as T9dA. The scalar « represents error due to

the linear approximation plus sampling noise, which we

treated as an SST-independent Gaussian random vari-

able in previous studies (Barsugli and Sardeshmukh 2002;

Barsugli et al. 2006; Shin et al. 2006) and minimized by

applying a smoothing spline procedure (Gu 1989). The

sensitivity vector may also be regarded as an optimal SST

forcing pattern for ZR, in the sense that among all pos-

sible T9dA of the same rms magnitude over the tropics,

T9dA 5 s gives the maximum response in ZR.

We also estimated s directly from observations and

the GOGA simulations with prescribed observed SSTs,

by linearly regressing the observed and simulated PDSI

time series on the observed tropical SST anomaly fields.

In this approach, the N-month time series of the area-

averaged PDSI, represented by an N-component row

vector z, was related to the N-month time series of the

tropical SST anomaly fields, represented by an M 3 N

matrix T9dA, as

z 5 aTT9dA 1 e,

where a is an M-component sensitivity (i.e., optimal

forcing) vector and e is an N-component error vector

that is minimized in a least squares sense by the re-

gression analysis. To perform clean comparisons of these

regression-based sensitivities with those derived from

the patch experiments, we coarse-grained the observed

tropical SST anomaly fields to patch scales before per-

forming the regression analyses2 (note that the SST

anomaly fields in the GOGA simulations were the same

FIG. 1. Observed (a) PDSI and (b) SST anomalies averaged over the 4-yr period July 1998–

June 2002 relative to the 1961–2000 average. The PDSI values shown represent an unweighted

average of nine separate PDSI computations performed using all nine combinations of three

surface temperature and three precipitation observational datasets (refer to text). The SST

anomalies are from the HadISST (Rayner et al. 2003) dataset. Our North American region of

interest (land points only) is indicated in (a) by the black rectangle. The black dots in (b)

represent the centers of the prescribed SST anomaly patches used to identify the optimal

tropical SST forcing pattern of North American drought. The elliptical patterns of the imposed

(left) Indo-Pacific and (right) Atlantic SST patches are shown in the gray shaded rectangles at

the bottom of the figure.

2 That is, we focused on the effect of observed SST anomalies on

scales equal to or larger than the patch scales (see Fig. 1b).
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as observed, by prescription). Because of our use of spa-

tially nonorthogonal patch patterns [whose rationale is

discussed in Barsugli and Sardeshmukh (2002)], we de-

termined the appropriate observed tropical SST anomaly

over the jth patch, after accounting for geometric overlap

factors, as T̂9j (t)dAj 5 4b jdAj, where the overhat de-

notes a weighted patch-area average and 4bj is the

weighted SST-anomaly average3 over the patch. The

factor 4 accounts for the fact that the sum of all our

patches gives a spatially uniform 48C anomaly over the

tropics.

The dynamical and regression approaches are for-

mally equivalent (s ’ a) under a linear approximation.

In practice, however, one expects to obtain different

results because of the limitation to finite ensemble sizes

in the dynamical approach and the limited length of the

observational SST record in the regression approach. It

is therefore not clear, a priori, which of these methods

yields a more accurate sensitivity pattern. We are, of

course, also interested in what the pattern actually looks

like.

3. Results

Figure 2 shows the optimal SST forcing pattern of

annual area-averaged North American PDSI deduced

from the regression analysis of the observations (Fig. 2a)

and GOGA simulations (Fig. 2b) of the period 1961–2000.

Note that the result in Fig. 2b represents an unweighted

average of 16 separate optimal patterns estimated using

the 16 individual GOGA simulations, as opposed to a

pattern obtained from the ensemble-mean simulation

(which is shown later in Fig. 3a). Although these sensi-

tivity patterns are not directly comparable to maps of

actual SST anomalies during any particular drought epi-

sode, it is nevertheless interesting to see some similarities

between Fig. 2a and the actual mean SST anomaly pat-

tern during the 1998–2002 drought (Fig. 1b), such as

cooling over the eastern Pacific Ocean and warming over

the western Pacific and North Atlantic Oceans. To that

extent, the SST anomalies during 1998–2002 represented

a ‘‘perfect ocean for drought’’ (Hoerling and Kumar 2003).

Note, however, that over the Indian Ocean, the signs of the

sensitivity and actual anomalies were opposite during this

period.

Given the chaotic nature of the climate system, one

would expect sampling uncertainty to corrupt our esti-

mated sensitivities even if the deterministic SST-forced

dynamics were linear. The GOGA simulations provide

FIG. 2. (a) Sensitivity of the North American PDSI to tropical SSTs derived from linear

regressions of the annually averaged observed PDSI anomalies on the annually averaged

tropical SST anomalies during the period 1961–2000 (1022 index per 106 square kilometer per

degree Celsius). Note that the observed tropical SST anomaly fields were truncated to the

spatial resolution of the patches in Fig. 1 prior to performing the regression analysis. (b) As in

(a), but derived from linear regressions of the PDSI in the GOGA simulations on the observed

SSTs. The GOGA regression analysis was completed for each ensemble member separately;

the plot shows an unweighted average of the 16 such sensitivity maps obtained. The hatched

regions show where the average sensitivity is indistinguishable from zero at the 90% level.

3 Here, b j 5 [�kT9(xk, t)T9j (xk)]/[2a�kT9j (xk)], where T9(xk, t)

is the time series of the observed topical SST anomaly, Tj9(xk) is the

jth patch pattern on grid xk as shown in Fig. 1b, and a(;1.25) is the

mean overlap factor, as explained in Barsugli et al. (2006).
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one way to assess this uncertainty, using the spread of the

sensitivities estimated from the 16 individual simulations.

The hatched regions in Fig. 2b highlight the areas of large

uncertainty obtained by this method. Indeed, in these

areas the estimated sensitivities are not statistically dif-

ferent from zero at the 90% level. In other areas, such as

the Indian and eastern Pacific Oceans, the sensitivities are

apparently more robust.

The GOGA simulations provide a cleaner way than

the observations to estimate the sensitivity of only the SST-

forced portion of the PDSI, by identifying that portion

with the ensemble-mean PDSI in the 16 simulations.

Performing the regression analysis on the ensemble-mean

PDSI time series (which reduces the noise by a factor of 4)

yields the optimal forcing pattern shown in Fig. 3a. Note

that it is nearly identical to the pattern in Fig. 2b, except

that the magnitudes are larger, because the air tempera-

ture and precipitation responses over the PDSI region are

negatively correlated (warm and dry for droughts, cold

and wet for wet spells). Also, with a much improved signal-

to-noise ratio, all the major features of this sensitivity

pattern are now statistically different from zero at the

90% level.

Figure 3b shows the map of PDSI sensitivities to trop-

ical SSTs obtained by the dynamical approach, using

our NCAR CCM3 patch integrations. Bearing in mind

that the PDSI, Z 5 Z(T, P), is a nonlinear function Z

(Palmer’s PDSI model) of surface air temperature T

FIG. 3. (a) Sensitivity of the North American PDSI to tropical SSTs derived from linear

regressions of the annually averaged ensemble-mean PDSI in the GOGA simulations on the

observed SSTs during 1961–2000 (1022 index per 106 square kilometers per degree Celsius). (b)

As in (a), but derived from the NCAR CCM3 patch integrations. (c) The annually averaged

ensemble-mean PDSI in the GOGA simulations over the period 1920–2005 (thick red line) and

the corresponding linearly reconstructed PDSI time series determined using the projection of

the observed annually averaged SST anomaly fields on the regression-based sensitivity pattern

shown in (a) (gray curve) and on the patch-experiment-based sensitivity pattern shown in (b)

(green curve). A third series of reconstructions, obtained as the weighted sum of the responses

to the individual patches, with the weights proportional to the SST anomaly amplitude in each

patch in each year, is indicated by the blue dots (refer to text).
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and precipitation P, the PDSI response in the years

1961–2000 to the jth patch was determined by subtracting

Z(hTi, hPi), calculated using the ensemble-mean hTi and

hPi in the GOGA runs, from the Z calculated using the

ensemble-mean GOGA hTi and hPi plus the hTRj i and

hPRj i linear responses obtained in the patch integrations,

that is, ZRj 5 Z(hTi1 hTRj i, hPi1 hPRj i)� Z(hTi, hPi).

Averaging these PDSI responses to the patch over all

years in the period 1961–2000, we defined the PDSI

sensitivity to the jth patch as the average PDSI re-

sponse to a unit SST forcing in the patch, that is, Sj 5

ZRj [�
k
T9

j
(x

k
) dA

k
]�1. These raw sensitivity estimates were

then assigned to the geographical centers of the patches

(see Fig. 1b) and lastly, spatially smoothed using a signal-

to-noise-ratio-based smoothing spline procedure (as in

Barsugli et al. 2006) to produce the map shown in

Fig. 3b.

Although the dynamically derived PDSI sensitivities

in Fig. 3b agree with the regression-based sensitivities in

Fig. 3a in several important respects, such as showing

sensitivity to cold SSTs in the tropical Pacific and At-

lantic Oceans and to warm SSTs in the Gulf of Mexico,

they differ in other important respects, especially in mag-

nitude, and in areas such as the northern edge of the

Indo-Pacific warm pool, even in sign.4 This raises a

question as to which of these sensitivity maps is more

accurate.

To answer this question, we projected the annually

averaged tropical SST anomaly fields in the years 1920–

2005 onto the sensitivity patterns in Figs. 3a and 3b and

obtained the gray and green time series in Fig. 3c, re-

spectively, as the SST-forced North American PDSI in the

two cases. We then compared these linearly reconstructed

PDSI responses using only the tropical SSTs with the

ensemble-mean PDSI responses obtained in the fully

nonlinear GOGA runs using globally prescribed SSTs

over the period, indicated by the thick red curve. As an

alternative reconstruction, we also estimated the PDSI

response in each year as a weighted sum of the responses

obtained for each patch, weighted by the observed SST

anomaly in that year over that patch. These estimates are

shown as the blue filled circles in Fig. 3c. The only reason

they deviate from the green curve is because they are

derived from the raw responses to the patches, whereas

the green curve is derived using the spatially smoothed

sensitivities.

In the training period (1961–2000), both the regression-

and patch-based PDSI reconstructions are highly correlated

with the GOGA responses (0.69 for the regression-based

reconstruction, and 0.80 and 0.83 for the smoothed and

raw patch-based reconstructions, respectively). Over the

full period (1920–2005), however, the correlation of the

regression-based reconstructions with the GOGA re-

sponses drops to 0.34, whereas the correlation of the

patch-based reconstructions using the smoothed sen-

sitivities remains high at 0.75. It is reassuring that the

latter is slightly better than the correlation of 0.71 ob-

tained using the noisier raw sensitivities, which might be

expected to give slightly better results in the training

period (because of fitting, in effect, not just the signal but

also some of the noise) but worse results in an independent

period. Overall, we conclude from this reconstruction test

that the smoothed patch-based sensitivities of the North

American PDSI to tropical SSTs (Fig. 3b) are more ac-

curate than the sensitivities derived from regressing the

ensemble-mean PDSI time series in the GOGA runs on

the tropical SSTs (Fig. 3a).

We have further confirmed the robustness of the patch-

based sensitivity map in Fig. 3b by repeating the entire

patch experiment with a different model, the MPIM

ECHAM5 atmospheric GCM, and following identical

sensitivity map construction procedures as for the NCAR

CCM3. The smoothed sensitivity map derived from the

MPIM ECHAM5 is shown in Fig. 4. It is very similar to

FIG. 4. As in Fig. 3b, but derived from identical patch integrations performed using MPIM

ECHAM5.

4 As noted in Seager (2007), a cold Indian Ocean often occurs in

conjunction with cold Pacific La Niña SSTs during a North

American drought episode. This was, however, not true during the

drought of 1998–2002, as shown in Fig. 1b. The warm Indian Ocean

during that drought was nevertheless argued by Hoerling and

Kumar (2003) to be important in forcing the drought, more con-

sistent with the sensitivity in Fig. 3b than in Fig. 3a.
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FIG. 5. (top) Optimal SST anomaly field (same pattern as in Fig. 3b) with rms amplitude of

18C over the tropical oceans. Linearly reconstructed precipitation (color shaded) and 200-hPa

height (contoured) response fields to the (a) Indian, (b) Pacific, and (c) Atlantic basin portions

of the optimal SST anomaly field. The basin boundaries are indicated by thick black lines in the

top panel. The zero contour in the 200-hPa height response field is thickened and negative

contours are dashed.
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the map in Fig. 3b; the pattern correlation is 0.68. Among

the reassuring similarities are the large sensitivity of

North American drought to SST anomalies in the off-

equatorial eastern Pacific (north of the Niño-3 region)

and in the Gulf of Mexico/Caribbean Sea.

Having established the robustness of the optimal SST

forcing pattern for maximizing the drought response over

North America, it is of interest to clarify how different

portions of that pattern contribute to the maximal re-

sponse. To this end we present in Fig. 5 maps of the

linearly reconstructed 200-hPa geopotential height and

surface precipitation responses to the Indian, Pacific, and

Atlantic Ocean portions of the optimal SST forcing field

with a 18C rms amplitude over the tropical oceans. Fol-

lowing a procedure similar to the linear reconstruction

of the PDSI responses in Fig. 3c, the reconstructed re-

sponses in Fig. 5 were determined as weighted sums of the

responses to the individual patches, with weights propor-

tional to the magnitude of the optimal SST forcing field at

the patch locations.

The precipitation response to the Pacific portion of the

optimal SST forcing (Fig. 5b) has a structure similar to that

associated with La Niña events: negative anomalies along

the SST anomaly minimum flanked by positive anomalies

[see, e.g., Fig. 5 of Schubert et al. (2009)]. The upper-

tropospheric geopotential height response shows a fa-

miliar wave train dispersing from the tropics in response

to the eastern tropical Pacific diabatic heating anomalies

associated with the precipitation anomalies (e.g., Ting and

Sardeshmukh 1993), producing a ridge over the conti-

nental United States and sustaining drought conditions

there. The response to the Indian Ocean forcing (Fig. 5a),

although considerably weaker, reinforces the response

over the United States to the Pacific forcing by also gen-

erating an upper-tropospheric ridge. The tropical Atlantic

forcing generates an even stronger upper-tropospheric

ridge over the United States than the Pacific forcing,

primarily in response to the SST forcing in the Gulf of

Mexico/Caribbean Sea area. The upper-level ridge re-

sponse is associated with a low-level trough response,

with the accompanying low-level cyclonic wind anomalies

reducing the moisture supply from the Gulf of Mexico/

Caribbean Sea to the Great Plains (figure not shown) and

sustaining drought conditions there as shown in previous

studies (e.g., Shin et al. 2006; Wang et al. 2006).

Before closing this section, we note that a concern one

may have with our sensitivity analysis is that we have

characterized North American drought in terms of a

single number, the area-averaged PDSI. As is well

known, there are large differences in drought occur-

rence and characteristics, for instance, over the western

and eastern parts of the United States. This point raises

the issue of whether the optimal SST forcing patterns

for regional U.S. droughts are substantially different

from the optimal forcing pattern for the continental-scale

drought discussed thus far. The fact that the response

patterns in Fig. 5 are spatially coherent over much of the

United States suggests otherwise. Still, for additional

confirmation, we repeated our entire PDSI sensitivity

analysis for five subcontinental regions (Fig. 6) using the

NCAR CCM3 patch integrations. The resulting optimal

SST patterns for maximizing the PDSI in each of these

regions are shown in Fig. 6. As expected, they are broadly

similar to one another and also to the optimal SST pattern

in Fig. 3b for North America as a whole. In particular,

despite differences of detail, they all indicate strong

FIG. 6. Sensitivity of regionally averaged PDSI in five North American regions to tropical SSTs, derived using the NCAR CCM3 patch

integrations (1022 index per 106 square kilometer per degree Celsius). The five regions are indicated by five colored rectangles: (i) central

United States (blue; 32.58–508N, 112.758–918W), (ii) southwestern United States (black; 308–408N, 1258–102.58W), (iii) northern Mexico

(Red; 208–27.58N, 112.758–918W), (iv) southeastern United States (green; 25.58–37.58N, 107.58–77.58W), and (v) northeastern United

States (yellow; 358–458N, 97.58–72.58W).
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drought sensitivity to a cold tropical Pacific Ocean and

a warm Gulf of Mexico/Caribbean Sea. The sensitivity

to a warm northern Indian and northwestern tropical

Pacific Ocean also appears to be robust. Chief among

the differences is the very different sensitivity of Mexican

drought to SSTs in the Gulf of Mexico/Caribbean Sea

area.

Lastly, to assess the robustness of these regional drought

sensitivities, we repeated for each of the five regions the

entire analysis of Fig. 3c of comparing the linearly re-

constructed PDSI time series with the corresponding

ensemble-mean PDSI time series in the NCAR CCM3

GOGA simulations. As in Fig. 3c, the linearly recon-

structed time series were obtained by projecting the an-

nually averaged observed tropical SST anomaly fields in

1920–2005 on each of the sensitivity maps in Fig. 6 and

also on the corresponding regression-based sensitivity

maps (not shown). The correlations of these regional

patch- and regression-based linearly reconstructed PDSI

time series with the ensemble-mean GOGA time series

are summarized in Table 1. They provide further confir-

mation that the smoothed patch-based sensitivity maps

are more accurate than the regression-based maps.

4. Summary and conclusions

In this study, we estimated the sensitivity of a widely

used index of drought over North America—the PDSI—

to SST changes at regularly spaced locations over the

tropical oceans. Plotting the PDSI sensitivities at those

tropical locations yields a sensitivity map that can also

be interpreted as an optimal SST anomaly pattern for

maximizing drought over North America, that is, as

an objectively determined ‘‘perfect ocean’’ for North

American drought. Another equally important interpre-

tation of such a sensitivity map is that it represents the

Green’s function of PDSI responses to tropical SST

forcing, enabling the PDSI response to an arbitrary

tropical SST anomaly field to be estimated as simply

the projection of that anomaly field onto the sensitivity

pattern. We demonstrated the utility of this latter in-

terpretation by ‘‘reconstructing’’ the annual PDSI re-

sponses to observed tropical SST changes for 1920–2005

through such projections and showing that this recon-

structed PDSI response time series correlated quite highly

(0.75) with the ensemble-mean PDSI response time series

obtained in an ensemble of NCAR CCM3 runs for 1920–

2005 with prescribed observed global SSTs (i.e., the

GOGA simulations).

We derived our sensitivity map by determining the

PDSI responses to localized SST anomaly ‘‘patches’’ pre-

scribed at 43 regularly spaced locations over the tropical

oceans, using two different atmospheric GCMs—the

NCAR CCM3 and the MPIM ECHAM5—and obtained

generally similar results (Figs. 3b and 4).

We argued that the sensitivity map obtained through

this dynamical ‘‘forward’’ Green’s function approach was

superior to that obtained from regressing the PDSI on

tropical SSTs in observations or in GCM simulations of

the past century with prescribed observed SSTs (GOGA

runs), even though the approaches are formally similar.

The main reason for this superiority, we suspect, may be

that an ensemble of anomaly patch integrations with a

relatively large 0.668C prescribed SST forcing is better

able to determine the response to SST changes in areas of

relatively weak observed SST variability, which is more

difficult to estimate from observations or from GOGA

runs because of the relatively small signal-to-noise ratio.

It should be stressed that the values in Figs. 3b, 4, and 6

are measures of the sensitivity of the PDSI to tropical

SSTs and not measures of the association of the PDSI and

tropical SSTs. Sensitivity is not correlation, even though it

can be approximately deduced from correlations. One

should not be surprised that our sensitivity patterns look

different from the La Niña SST pattern often associated

with North American drought, or from a pattern obtained

by correlating the PDSI with tropical SSTs, or from pat-

terns obtained through combined-EOF or singular value

decomposition (SVD) analyses of the PDSI and tropical

SSTs. These latter patterns are patterns of association,

TABLE 1. Correlations of the linearly reconstructed regional PDSI time series over 1920–2005 with the ensemble-mean regional PDSI

time series obtained in the NCAR CCM3 GOGA simulations, for the five regions shown in Fig. 6. Results are shown for reconstructed

time series obtained by projecting the observed tropical SST anomaly fields for 1920–2005 on the regression-based, raw patch-based, and

spatially smoothed patch-based (i.e., optimal) regional PDSI sensitivity maps. Numbers in parentheses indicate the correlations over the

training period (1961–2000).

Region

Correlations of GOGA PDSI responses with reconstructed responses

Regressions Patch-based raw sensitivities Patch-based smoothed sensitivities

Central United States 0.29 (0.66) 0.65 (0.79) 0.72 (0.75)

Southwestern United States 0.38 (0.65) 0.62 (0.74) 0.68 (0.75)

Northern Mexico 0.64 (0.70) 0.82 (0.89) 0.76 (0.86)

Southeastern United States 0.40 (0.71) 0.75 (0.86) 0.77 (0.86)

Northeastern United States 0.36 (0.62) 0.75 (0.86) 0.77 (0.89)
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whose relevance to drought arises basically from their

positive—but imperfect—spatial correlation with our

sensitivity patterns.

It is also important to distinguish between the sensitivity

of drought to an SST anomaly at a tropical location and

the actual effect on the drought of that SST anomaly,

which is the sensitivity multiplied by the SST anomaly.

Regions of large sensitivity need not coincide with those

of large influence. For example, as Figs. 3b and 4 show,

the eastern equatorial Pacific is only one of several trop-

ical regions to which North American drought is sensitive,

but because it is also a region of large ENSO-related in-

terannual SST variability, it has a relatively large actual

influence on North American drought on interannual

scales than, say, the Indian Ocean. On longer time scales,

the situation could be different, with a warming trend of

the Indian Ocean possibly having a larger influence on

North American drought trends.

Last, interpreting the sensitivity maps in Figs. 3b, 4,

and 6 as Green’s functions raises the exciting possibility

of using them to generate forecasts of the PDSI in a ‘‘two

tiered’’ prediction system, in which a tropical SST fore-

cast generated by other means is simply projected onto

such sensitivity patterns, possibly derived from a number

of other GCMs in addition to the two GCMs discussed

here. One could use such an approach to generate PDSI

projections several seasons to several decades ahead.

This is a topic of current research.
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