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The case for open computer programs
Darrel C. Ince1, Leslie Hatton2 & John Graham-Cumming3

Scientific communication relies on evidence that cannot be entirely included in publications, but the rise of
computational science has added a new layer of inaccessibility. Although it is now accepted that data should be made
available on request, the current regulations regarding the availability of software are inconsistent. We argue that, with
some exceptions, anything less than the release of source programs is intolerable for results that depend on computation.
The vagaries of hardware, software and natural language will always ensure that exact reproducibility remains
uncertain, but withholding code increases the chances that efforts to reproduce results will fail.

T he rise of computational science has led to unprecedented
opportunities for scientific advance. Ever more powerful computers
enable theories to be investigated that were thought almost

intractable a decade ago, robust hardware technologies allow data collec-
tion in the most inhospitable environments, more data are collected, and
an increasingly rich set of software tools are now available with which to
analyse computer-generated data.

However, there is the difficulty of reproducibility, by which we mean
the reproduction of a scientific paper’s central finding, rather than exact
replication of each specific numerical result down to several decimal
places. We examine the problem of reproducibility (for an early attempt
at solving it, see ref. 1) in the context of openly available computer
programs, or code. Our view is that we have reached the point that, with
some exceptions, anything less than release of actual source code is an
indefensible approach for any scientific results that depend on computa-
tion, because not releasing such code raises needless, and needlessly
confusing, roadblocks to reproducibility.

At present, debate rages on the need to release computer programs
associated with scientific experiments2–4, with policies still ranging from
mandatory total release to the release only of natural language descrip-
tions, that is, written descriptions of computer program algorithms.
Some journals have already changed their policies on computer program
openness; Science, for example, now includes code in the list of items
that should be supplied by an author5. Other journals promoting code
availability include Geoscientific Model Development, which is devoted,
at least in part, to model description and code publication, and
Biostatistics, which has appointed an editor to assess the reproducibility
of the software and data associated with an article6.

In contrast, less stringent policies are exemplified by statements such
as7 ‘‘Nature does not require authors to make code available, but we do
expect a description detailed enough to allow others to write their own
code to do similar analysis.’’ Although Nature’s broader policy states that
‘‘...authors are required to make materials, data and associated protocols
promptly available to readers...’’, and editors and referees are fully
empowered to demand and evaluate any specific code, we believe that
its stated policy on code availability actively hinders reproducibility.

Much of the debate about code transparency involves the philosophy of
science, error validation and research ethics8,9, but our contention is more
practical: that the cause of reproducibility is best furthered by focusing on
the dissection and understanding of code, a sentiment already appreciated
by the growing open-source movement10. Dissection and understanding
of open code would improve the chances of both direct and indirect
reproducibility. Direct reproducibility refers to the recompilation and

rerunning of the code on, say, a different combination of hardware and
systems software, to detect the sort of numerical computation11,12 and
interpretation13 problems found in programming languages, which we
discuss later. Without code, direct reproducibility is impossible. Indirect
reproducibility refers to independent efforts to validate something other
than the entire code package, for example a subset of equations or a par-
ticular code module. Here, before time-consuming reprogramming of an
entire model, researchers may simply want to check that incorrect coding of
previously published equations has not invalidated a paper’s result, to
extract and check detailed assumptions, or to run their own code against
the original to check for statistical validity and explain any discrepancies.

Any debate over the difficulties of reproducibility (which, as we will
show, are non-trivial) must of course be tempered by recognizing the
undeniable benefits afforded by the explosion of internet facilities and the
rapid increase in raw computational speed and data-handling capability
that has occurred as a result of major advances in computer technology14.
Such advances have presented science with a great opportunity to address
problems that would have been intractable in even the recent past. It is
our view, however, that the debate over code release should be resolved as
soon as possible to benefit fully from our novel technical capabilities. On
their own, finer computational grids, longer and more complex compu-
tations and larger data sets—although highly attractive to scientific
researchers—do not resolve underlying computational uncertainties of
proven intransigence and may even exacerbate them.

Although our arguments are focused on the implications of Nature’s
code statement, it is symptomatic of a wider problem: the scientific
community places more faith in computation than is justified. As we
outline below and in two case studies (Boxes 1 and 2), ambiguity in its
many forms and numerical errors render natural language descriptions
insufficient and, in many cases, unintentionally misleading.

The failure of code descriptions
The curse of ambiguity
Ambiguity in program descriptions leads to the possibility, if not the
certainty, that a given natural language description can be converted
into computer code in various ways, each of which may lead to different
numerical outcomes. Innumerable potential issues exist, but might
include mistaken order of operations, reference to different model ver-
sions, or unclear calculations of uncertainties. The problem of ambiguity
has haunted software development from its earliest days.

Ambiguity can occur at the lexical, syntactic or semantic level15 and is
not necessarily the result of incompetence or bad practice. It is a natural
consequence of using natural language16 and is unavoidable. The
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problem is regarded as so axiomatic that its avoidance or minimization
is routinely taught at the undergraduate level in computing degrees. Nor
is the study of ambiguity confined to the classroom. Active research
continues on the use of tools for the detection of ambiguity17, the avoid-
ance of ambiguity in major projects18, and the clarification of the intended
functions of computer programs15.

One proposed solution to the problem of ambiguity is to devote a
large amount of attention to the description of a computer program,
perhaps expressing it mathematically or in natural language augmented
by mathematics. But this expectation would require researchers to
acquire skills that are only peripheral to their work (set theory, predicate
calculus and proof methods). Perhaps worse, investment of effort or
resources alone cannot guarantee the absence of defect19. A recent
study20 of a tightly specified, short, simply expressed algorithm whose
semi-mathematical specification was supplemented by example outputs
showed that major problems still arose with large numbers of programs
individually implemented to this specification. In short, natural language
descriptions cannot hope to avoid ambiguous program implementations,
with unpredictable effects on results.

Errors exist within ‘perfect’ descriptions
Let us assume for a moment that a researcher, perhaps trained—as are
computer scientists—to think of computer algorithms as mathematical
objects, and fully versed in the formal semantics of software description,
has managed to describe a computer program perfectly in some notation.
Unfortunately, even such a description would not ensure direct or indirect
reproducibility, because other forms of error or ambiguity (unrelated to
natural language) are likely to creep in, leading to potentially serious
uncertainties (Box 2).

First, there are programming errors. Over the years, researchers have
quantified the occurrence rate of such defects to be approximately one to
ten errors per thousand lines of source code21.

Second, there are errors associated with the numerical properties of
scientific software. The execution of a program that manipulates the
floating point numbers used by scientists is dependent on many factors
outside the consideration of a program as a mathematical object22.
Rounding errors can occur when numerous computations are repeatedly
executed, as in weather forecasting23. Although there is considerable
research in this area, for example in arithmetic and floating point calcula-
tions24–27, algorithms28, verification29 and fundamental practice30, much
of it is published in outlets not routinely accessed by scientists in generic
journals, such as Computers & Mathematics with Applications,
Mathematics in Computer Science and the SIAM Journal on Scientific
Computing.

Third, there are well-known ambiguities in some of the internationally
standardized versions of commonly used programming languages in
scientific computation13. Monniaux22 describes an alarming example
relating to implementation of software features:

‘‘More subtly, on some platforms, the exact same expression, with the
same values in the same variables, and the same compiler, can be evaluated
to different results, depending on seemingly irrelevant statements (print-
ing debugging information or other constructs that do not openly change
the values of variables).’’

This is known as an order-of-evaluation problem and many program-
ming languages are subject to its wilful ways. Ironically, such execution

BOX 1

The United Kingdom Meteorological Office produces (in conjunction
with the University of East Anglia’s Climatic Research Unit) the
downloadable and widely used gridded temperature anomaly data
sets known as HadCRUT and CRUTEM3. Yet even such a high-profile
data set, developed by an organization with a good standard of
software development34, contained errors that would have been more
quickly identified and rectified had the underlying code been readily
available.

In 2009, on examining the available data sets and the description of
the algorithm35, J.G.-C. identified a number of errors (the software he
used to check the meteorological database is available upon request).
One set of errors was procedural, and involved incorrect computation
of historical average temperatures in a number of records in New
Zealand and Australia. The Meteorological Office confirmed the errors,
showed that they had resulted in errors up to 0.2 uC (either warmer or
cooler) in the average temperature for Australia and New Zealand in
some years before 1900, and issued an update to CRUTEM3. Two
other errors occurred in the coding of the calculation of station errors
(an estimate of the error in any average temperature reading). When
corrected, a minor reduction in station errors resulted, improving the
accuracyof thedata. So, although these implementationproblemsdid
not lead to serious errors in the temperature data sets, they highlight
the difficulty of translating a natural-language description (even with
some formulae expressed mathematically) into code.

These errors do not in any way reflect badly on the original authors.
The code rewritingsimply plays the part of peer review and it is normal
to find such errors. Indeed, the discovery of such errors in ‘working’
software is exceedingly common in all computing, even when the
software has been in use for a considerable time. This was
emphatically demonstrated in a seminal IBM study36, demonstrating
that fully a third of all the software failures in the study took longer than
5,000 execution years (execution time indicates the total time taken
executing a program) to fail for the first time.

BOX 2

As discussed, unambiguous descriptions are no guarantee of
reproducibility. One example from the geological literature makes the
point37. This study compared nine different commercial
implementations of the same seismic data-processing algorithms,
developed independently. Several sources of ambiguity were
successfully excluded, the same data set was used, the signal-
processing algorithms used were unambiguously specified in
mathematics, and the same programming language was used
(Fortran 77). The individual companies followed industry standards in
code implementation.

Approximately 200,000 lines of code were exercised in each of the
packages in a 14-stage pipeline for which the output of each stage was
the input to the next. The signal-processing algorithms used would be
familiar to many scientists—such as Wiener deconvolution, acoustic
wave equation solutions, fast Fourier transforms and numerous
common statistical procedures.

The initial stage involved reading 32-bit pressure data from tapes
recorded in a marine environment. During the processing pipeline, the
agreement between the results of each package declined from the six
significant figures present in the input data to only between one and
two in the final output. These data, however, were used by geologists to
site extremely expensive marine drilling rigs and could
‘‘fundamentally affect the conclusions reached as to the nature of
potential hydrocarbon accumulations’’ 37. Furthermore ‘‘it seems
reasonable to infer that the primary source of disagreement is indeed
software error’’37. Even porting other seismic software between
different architectures using the same input data lost two out of six
significant places12. On the positive side, correction of the
programming errors found during developer feedback led to
considerably improved agreement.

Although conducted some years ago, the study is just as relevant
today. Fortran 77 is still in use in one dialect or another in scientific
research, the same software assurance procedures are still widely
used, and scientific programmers are still people, subject to human
fallibility.
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ambiguity is quite deliberate and is present to allow a programming
language compiler more flexibility in its optimization strategy. And
even when programs are simple, or developed by the largest software
companies, such errors remain surprisingly common: numerical
ambiguity led Microsoft to declare in 2010 and reaffirm in September
2011, that the treatment of floating point numbers in its popular Excel
spreadsheet ‘‘...may affect the results of some numbers or formulas due
to rounding and/or data truncation.’’ (http://support.microsoft.com/kb/
78113).

Perfection is no guarantee of reproducibility
Finally, even if a computer program could be unambiguously described
and implemented without error, other problems can arise in machine
deployment whereby the results from identical code often diverge when
hardware and software configurations are changed22. So even perfection
in one’s own software environment does not guarantee reproducibility.
As a result, to maximize the chances of reproducibility and consistency,
not only would we urge code release, but also a description of the
hardware and software environment in which the program was executed
and developed.

Challenges are no excuse for closed code
Nature’s policy on code release implies that algorithmic descriptions using
mathematical specifications, equations, formal algorithmic descriptions
or pseudocode (simplified version of complete code) may be required. But
there is no guarantee that such tools can avoid ambiguity20, and even if
they could, we have shown above that implementation and numerical
errors—possibly compounded by differences in machine architecture—
will still arise. So, even if complete code is made available, exact replication
or even reproduction of central results may fail. A reasonable observer
might therefore ask why code should be made available at all. Our res-
ponse is that the alternative is far worse. Keeping code closed ensures that
potential uncertainties or errors in a paper’s conclusions cannot be traced
to ambiguity, numerical implementation, or machine architecture issues
and prevents testing of indirect reproducibility. Although it is true that
independent efforts to reproduce computational results without recourse
to the original source code constitute an important approach, the all-too-
common treatment of code as a black box unnecessarily slows and
impedes valid efforts to evaluate model results. We therefore regard the
non-availability of code as a serious impediment to reproducibility.

Potential barriers and proposed solutions
There are a number of barriers to the release of code. These include a
shortage of tools that package up code and data in research articles; a
shortage of central scientific repositories or indexes for program code;
an understandable lack of perception of the computational problems
with scientific code leading to the faulty assumption that program
descriptions are adequate (something we address in this article); and
finally that the development of program code is a subsidiary activity in
the scientific effort.

A modest proposal
An effective step forward would be for journals to adopt a standard for
declaring the degree of source code accessibility associated with a sci-
entific paper. A number of simple categories illustrate the idea:

. Full source code: full release of all source code used to produce the
published results along with self-tests to build confidence in the
quality of the delivered code, as is the case with Perl modules in
the CPAN archive, for example (http://cpan.org).

. Partial source code: full release of source code written by the
researcher accompanied by associated documentation of ancillary
packages used, for example commercial scientific subroutine libraries.

. Marginal source code: release of executable code and an application
programming interface to allow other researchers to write test cases.

. No source code: no code at all provided.

This hierarchy of disclosure would alert both the readers and authors of
a journal article to the fact that the issue is important and would high-
light the degree to which results might be reproduced independently.
There remain, however, some potential stumbling blocks, a number of
which can easily be resolved using existing facilities.

Intellectual property rights
Clearly, if there is evidence of commercial potential or use, such as a
patent or some copyright, then there is a problem. It is difficult to see
how a journal might deal with this without substantial financial com-
mitment to independent testing under a non-disclosure agreement or
possibly even the purchase of commercial rights. Perhaps the simplest
solution is for a journal to flag the software as ‘No source code’ (ideally
giving the reasons) until such time as the source code can be included,
either because the code goes into the public domain or is released under
some free licence. Such a designation simply says that, for the moment,
the results are not reproducible with the authors’ own source code, and
that testing of the main results must proceed with independent
approaches.

Limited access
Researchers may not have access to at least some of the software packages
that are used for development. We suggest that this would not be a
problem for most researchers: their institutions would normally provide
such software. If it were to be a problem, then a journal could mark a
publication as ‘Partial source code’. The release of the code, even without
the software environment required for compilation and execution, would
still be valuable in that it would address issues such as dissection and
indirect reproducibility (see above) and would enable rewriting using
other programming languages.

Procedure
Adopting the simple disclosure of the availability of source code will
help make it clear to the readership of a journal that this is an important
issue, while also giving them an idea of the degree of code release.
However, we would further suggest that journals adopt a standard that
specifies that supplementary material supporting a research article must
describe each of the released modular components of any software used.
Nature editors and referees are already empowered to include an
appraisal of code in their judgement about the publication potential of
the article, and this practice should be more widely advertised and
supported. A good example of this approach is the way that the journal
Geoscientific Model Development asks authors to describe their program
code.

Logistics
Over the past two decades, the open-source community has solved the
logistics of releasing and storing code while maintaining a cooperative
development environment. SourceForge (http://www.sourceforge.net/)
is an excellent example. Founded in 1999, it is a web-based source-code
repository which acts as a free centralized location for developers
working on open-source projects. It currently hosts around 300,000
projects and has over two million registered users. Not only does it store
source code but also it provides access to version control information,
project wikis (websites that are easily modifiable by its users) and data-
base access. We urge funding agencies to investigate and adopt similar
solutions.

Packaging
There are a number of tools that enable code, data and the text of the article
that depends on them to be packaged up. Two examples here are Sweave
associated with the programming language R and the text-processing
systems LaTeX and LyX, and GenePattern-Word RRS, a system specific
to genomic research31. Sweave allows text documents, figures, experi-
mental data and computer programs to be combined in such a way that,
for example, a change in a data file will result in the regeneration of all the
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research outputs. GenePattern-Word RRS is similar in that it enables an
author to link text, tables and figures to the analysis and data that yielded
the results, reported in a word-processed document; it also allows further
experimentation (for example, additional analyses can be carried out). It
is still early days, however, and localized solutions are emerging at the
grassroots level. Donoho and co-workers, for example, have developed
software packages that allow anyone with access to the Matlab program-
ming language and development environment to reproduce figures from
their harmonic analysis articles, inspect source code, change parameters
and access data sets32.

Steps to implementation
Our thesis is that journal and funding body strictures relating to code
implementations of scientific ideas are now largely obsolete. We have
suggested one modest path to code availability in this article. There are a
number of further steps that journals, academies and educational orga-
nizations might consider taking:

. Research funding bodies should commission research and develop-
ment on tools that enable code to be integrated with other elements
of scientific research such as data, graphical displays and the text of
an article.

. Research funding bodies should provide metadata repositories that
describe both programs and data produced by researchers. The
Australian National Data Service (http://www.ands.org.au/) which
acts as an index to data held by Australian research organizations, is
one example of this approach.

. Journals should expect researchers to provide some modular
description of the components of the software that support a
research result; referees should take advantage of their right to
appraise software as part of their reviewing task. An example of a
modular description can be seen in a recent article published in
Geoscientific Model Development33.

. Science departments should expand their educational activities into
reproducibility. Clearly such teaching should be relevant to the
science at hand; however, courses on statistics, programming and
experimental method could be easily expanded and combined to
include the concept of reproducibility.
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