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Abstract
We analyze five prominent time series of global temperature (over land and ocean) for their
common time interval since 1979: three surface temperature records (from NASA/GISS,
NOAA/NCDC and HadCRU) and two lower-troposphere (LT) temperature records based on
satellite microwave sensors (from RSS and UAH). All five series show consistent global
warming trends ranging from 0.014 to 0.018 K yr−1. When the data are adjusted to remove the
estimated impact of known factors on short-term temperature variations (El Niño/southern
oscillation, volcanic aerosols and solar variability), the global warming signal becomes even
more evident as noise is reduced. Lower-troposphere temperature responds more strongly to
El Niño/southern oscillation and to volcanic forcing than surface temperature data. The
adjusted data show warming at very similar rates to the unadjusted data, with smaller probable
errors, and the warming rate is steady over the whole time interval. In all adjusted series, the
two hottest years are 2009 and 2010.

Keywords: climate, global warming, El Niño/southern oscillation, solar cycles

1. Introduction

The prime indicator of global warming is, by definition, global
mean temperature. Time series of global temperature show a
well-known rise since the early 20th century and most notably
since the late 1970s. This widespread temperature increase
is corroborated by a range of warming-related impacts:
shrinking mountain glaciers, accelerating ice loss from ice
sheets in Greenland and Antarctica, shrinking Arctic sea ice
extent, sea level rise, and a number of well-documented
biospheric changes like earlier bud burst and blossoming
times in spring (IPCC 2007).

Despite the unequivocal signs of global warming, some
public (and to a much lesser extent, scientific) debate
has arisen over discrepancies between the different global
temperature records, and over the exact magnitude of, and
possible recent changes in, warming rates (Peterson and
Baringer 2009). To clarify these issues, we analyze the five
leading quasi-global temperature data sets up to and including
the year 2010. We focus on the period since 1979, since
satellite microwave data are available and the warming trend
since that time is at least approximately linear.

Much of the variability during that time span can be
related to three known causes of short-term temperature
variations: El Niño/southern oscillation (ENSO, an internal

quasi-oscillatory mode of the ocean–atmosphere system)
(Newell and Weare 1976, Angell 1981, Trenberth et al
2002), volcanic eruptions (IPCC 2007), and solar variations
including the solar cycle (IPCC 2007, Lean and Rind
2008, 2009). This complicates both comparison and trend
analysis of the temperature records. Since independent
measures of these variations are available, their influence can
to a large extent be removed, leading to adjusted, less noisy
global temperature data sets. Therefore we will remove the
influence of these factors on the temperature data sets, not
only to isolate the longer-term changes, but also to identify
whether different data sets show meaningful differences in
their response to these factors. The influence of exogenous
factors will be approximated by multiple regression of
temperature against ENSO, volcanic influence, total solar
irradiance (TSI) and a linear time trend to approximate the
global warming that has occurred during the 32 years subject
to analysis.

Lean and Rind (2008) performed a multivariate
correlation analysis for the period 1889–2006 using the
CRU temperature data (Brohan et al 2006), and found that
they could explain 76% of the temperature variance over
this period from anthropogenic forcing, El Niño, volcanic
aerosols and solar variability. The long-term warming trend
almost exclusively stems from anthropogenic forcing. They
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also analyzed the geographic distribution of the temperature
response. In a follow-up paper (Lean and Rind 2009) they
applied their results to discuss the expected climate evolution
over the coming two decades. Our regression analysis uses
a similar approach to Lean and Rind, but is applied here to
compare five different global temperature data sets over the
past 32 years.

Several scientific teams regularly estimate global
and regional (including hemispheric) average temperature.
Surface temperature is estimated by combining data
from land-based meteorological stations with sea surface
temperature estimates from satellites and marine observations
(Hansen et al 2010). Lower-troposphere (LT) temperature is
estimated by combining microwave sounding unit (MSU) and
advanced microwave sounding unit (AMSU) data from more
than a dozen satellite missions since late 1978/early 1979
(Mears and Wentz 2008, Christy et al 2000).

Each science team adopts different methods for
correcting input data for non-climatic influences. Different
surface temperature estimates begin with much of the
same raw data, but must be corrected for such factors as
station moves, time-of-observation bias, and the ‘urban heat
island’, or UHI, effect. For satellite data sets, creation of
a lower-troposphere record requires combining information
from multiple MSU/AMSU channels, since no single channel
represents the lower troposphere exclusively (in fact they
are all influenced by the entire atmosphere, including the
stratosphere). Other complications with satellite data include
the uncertain effects of orbital decay (and disagreement
between teams about how best to correct it), and the necessity
of splicing together data from over a dozen satellite missions
(with further disagreement between teams about how to do
so), each with its own calibration issues. Instrumentation has
evolved over time, most notably the switch from MSU to
AMSU technology with the launch of NOAA-15 in 1998.
Clearly, no single data record, surface or satellite, is free of
complications and uncertainties.

For the most part, the complications which affect
surface and satellite records are mutually exclusive—for
instance, satellite data are free from contamination due to
UHI—although surface and satellite data are not estimates of
exactly the same physical quantity. Yet the lower-troposphere
and near-surface temperatures are coupled strongly enough,
especially on longer times scales, that a comparison between
them provides useful insights.

2. Data

Our analysis includes the five best-known global and
hemispheric temperature time series. All data sets are
combined land/ocean temperature estimates. For surface
temperature, we use GISS: the land+ ocean temperature data
from NASA’s Goddard Institute for Space Studies (Hansen
et al 2010 and references therein)3, NCDC: the Smith and
Reynolds data set from NOAA’s National Climate Data Center

3 Available at http://data.giss.nasa.gov/gistemp/.

(Smith and Reynolds 2005, Smith et al 2008),4 and CRU:
the variance-adjusted HadCRUT3v data sets from the Hadley
Centre/Climate Research Unit in the UK (Brohan et al 2006,
Jones et al 2006).5 For LT temperature, we use RSS: data
from Remote Sensing Systems (Mears and Wentz 2008),
lower-troposphere data version 3.3,6 and UAH: that from the
University of Alabama at Huntsville (Christy et al 2000),
lower-troposphere data version 5.3.7

We characterize the ENSO by the multivariate el Niño
index, or MEI (Wolter and Timlin 1993, 1998).8 For volcanic
influence we use the aerosol optical thickness data from Sato
et al (1993), or AOD.9 To characterize the solar influence on
temperature we use the total solar irradiance (TSI) data from
Fröhlich (2006). To test whether the results might be sensitive
to these choices, we also did experiments characterizing
el Niño by the southern oscillation index (SOI) rather than
MEI, characterizing volcanic aerosols by the volcanic forcing
estimate of Ammann et al (2003) rather than the AOD
data from Sato et al, and using monthly sunspot numbers
as a proxy for solar activity rather than TSI. None of
these substitutions affected the results in a significant way,
establishing that this analysis is robust to the choice of data
to represent exogenous factors.

Multiple regression can lead to misleading results when
the independent variables are nearly collinear. Hence we
computed the correlation between the independent variables
used during the time span under study. The strongest
correlation was between TSI and the linear time trend,
with correlation coefficient −0.47. Correlations correspond
to direction cosines between the independent variables when
viewed as basis vectors, so the smallest angle between any
two basis vectors is a little over 61◦. Hence the independent
variables are certainly not nearly collinear. In addition, we
did regression experiments with each of the exogenous factors
omitted one at a time, then tested whether or not its influence
was still present in the residuals. All three exogenous factors
showed about the same influence when fit to these residuals,
as when fit in a multiple regression using all variables.

Besides known physical influences on temperature,
another effect is detectable in some of the temperature records.
Anomalies are computed as the difference between a given
month’s temperature and the average for that same month
during a baseline period (each data set uses a different
baseline). This sets the zero point for temperature anomaly,
and also removes the annual cycle from the data. However, it
removes the average annual cycle during the baseline period.
If the annual cycle changes, then the anomalies will contain
a residual annual cycle, which is the difference between the
annual cycle at a given time and its average during the baseline
period.

4 Available at www.ncdc.noaa.gov/cmb-faq/anomalies.html.
5 Available at www.cru.uea.ac.uk/cru/data/temperature/#datdow.
6 Available at www.remss.com/msu/msu data description.html#zonal
anomalies.
7 Available at http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt.
8 Available at www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html.
9 Available at http://data.giss.nasa.gov/modelforce/strataer/.

2

http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.ncdc.noaa.gov/cmb-faq/anomalies.html
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.cru.uea.ac.uk/cru/data/temperature/#datdow
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
www.remss.com/msu/msu_data_description.html#zonal_anomalies
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
http://vortex.nsstc.uah.edu/public/msu/t2lt/uahncdc.lt
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
www.esrl.noaa.gov/psd/people/klaus.wolter/MEI/table.html
http://data.giss.nasa.gov/modelforce/strataer/
http://data.giss.nasa.gov/modelforce/strataer/
http://data.giss.nasa.gov/modelforce/strataer/
http://data.giss.nasa.gov/modelforce/strataer/
http://data.giss.nasa.gov/modelforce/strataer/
http://data.giss.nasa.gov/modelforce/strataer/
http://data.giss.nasa.gov/modelforce/strataer/


Environ. Res. Lett. 6 (2011) 044022 G Foster and S Rahmstorf

Figure 1. Five major global temperature records.

In fact for some of the data sets, the annual cycle in
temperature during the time span under analysis has changed
noticeably relative to that during its baseline period. Hence
there is a residual annual cycle. This is greater for the data
sets whose baseline period is distinctly different from the
time period analyzed in this study. For example, Fourier
analysis of residuals from a linear fit to GISS data during
the period January 1979–December 2010 shows clear peaks at
frequencies 1 and 2 cycles yr−1. To allow for a residual annual
cycle in the data, we included in the multiple regression a
second-order Fourier series fit to model an annual cycle, i.e.,
trigonometric functions with frequencies 1 and 2 yr−1. This
effectively transforms the adjusted data to anomalies with
respect to the entire time span, by adjusting the annual cycle
to match its average over that period. Therefore the multiple
regression includes a linear time trend, MEI, AOD, TSI and a
second-order Fourier series with period 1 yr.

The influence of exogenous factors can have a delayed
effect on global temperature. Therefore for each of the three
factors we tested all lag values from 0 to 24 months, then
selected the lag values which gave the best fit to the data.

Since one of our main purposes is to compare the
results from surface- and satellite-based temperature records,
this analysis covers the period from January 1979 through
December 2010, during which all five records, as well as the
independent series defining the three exogenous factors, have
complete coverage.

3. Warming rates of unadjusted data

Annual averages of the monthly data from all five sources are
shown in figure 1. All have been set to the same baseline
(the entire time span, January 1979–December 2010), then
offset by 0.2 ◦C for plotting. We first computed warming rates
by linear regression from the raw data, compensating for the
standard errors by applying an ARMA(1, 1) model (see the
appendix for discussion of the correction for autocorrelation).
Results are listed in the first column of table table 1.

Table 1. Warming rates in ◦C/decade, and lag in months, for each
of the five temperature records and each of the three exogenous
factors. Numbers in parentheses are standard errors in the final
digits of the estimated values.

Warming (◦C/decade) Lag (months)

Raw Adjusted MEI AOD TSI

GISS 0.167(25) 0.171(16) 4 7 1
NCDC 0.162(22) 0.175(12) 2 5 1
HadCRU 0.156(25) 0.170(12) 3 6 1
RSS 0.149(40) 0.157(13) 5 5 0
UAH 0.141(44) 0.141(15) 5 6 0

All five data sets give warming rates which are consistent
with one another. The largest difference is between the GISS
and UAH data, but the difference fails statistical significance
testing. Even so, the two lowest rates are for LT temperature
while the three highest are for surface temperature. This
suggests the possibility that the LT is warming more slowly
than the surface, although we reiterate that such a suggestion
is not supported with statistical significance.

4. Warming rates of adjusted data

Using multiple regression to estimate the warming rate
together with the impact of exogenous factors, we are able
to improve the estimated warming rates, and adjust the
temperature time series for variability factors. The adjusted
warming rates are listed in the second column of table 1,
together with the best-fit lags for each of the three factors.

When exogenous influences are accounted for, the
standard errors in the warming rate estimates are greatly
reduced. This is especially true for the LT data sets, because
these factors affect those data more strongly than they affect
surface temperature. The warming rates are now in even better
agreement, and it remains the case that none of the differences
are statistically significant.

We also duplicated the analysis for the northern
and southern hemispheres separately. Their warming rates
(together with the global estimates) are plotted in figure 2.
For both hemispheres, as for the globe, all five data sets give
comparable warming rates with no statistically significant
differences. However, we confirm the well-known fact that
the northern hemisphere is warming more rapidly than the
southern.

The multiple regression also yields estimates of the
coefficients for each of the exogenous factors. The coefficients
of MEI, AOD and TSI influence are shown in figure 3. For
both MEI and AOD, there is no indication of hemispheric
differences but a strong indication of much greater influence
on LT temperature than on surface temperature.

5. Comparison of adjusted data sets

Figure 4 shows the adjusted data sets (with the influence of
MEI, AOD and TSI, as well as the residual annual cycle
removed) for monthly data. Two facts are evident. First,
the agreement between the different data sets, even between

3
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Figure 2. Estimated warming rates. Black dots are for global
temperature, red for the northern hemisphere, blue for the southern
hemisphere. Error bars are 2-σ .

Figure 3. Coefficients of temperature response to MEI
(multivariate el Niño index), AOD (aerosol optical depth) and TSI
(total solar irradiance). Black dots are for global temperature, red
for the northern hemisphere, blue for the southern hemisphere. We
have plotted the negative of the AOD coefficient so that in all
graphs, higher points represent stronger response.

surface and LT data, is excellent. Second, the global warming
signal (which is still present in the adjusted data because
the linear time trend is not removed) is far clearer and more
consistent. When the fluctuations in temperature over the last
32 years (which tend to obscure the continuation of the global
warming trend) are accounted for, it becomes obvious that
there has not been any cessation, or even any slowing, of
global warming over the last decade (or at any time during this
time span). In other words, any deviations from an unchanging
linear warming trend are explained by the influence of ENSO,
volcanoes and solar variability.

Figure 4. Adjusted data sets for all five sources, after removing the
estimated influence of el Niño, volcanic eruptions and solar
variations.

Figure 5. Annual averages of the adjusted data.

This is even clearer in the graph of annual averages of
adjusted data in figure 5. It is worthy of note that for all five
adjusted data sets, 2009 and 2010 are the two hottest years on
record.

To look for changes in the warming rates over time, we
computed the rate in adjusted data sets for different time
intervals, for all start years from 1979 to 2005 and ending
with the present. The results (figure 6) show no sign of a
change in the warming rate during the period of common
coverage. It is noteworthy that the noise reduction from
removing the influence of exogenous factors enables warming
to be established using shorter time spans than with raw data.
All five data sets show statistically significant warming even
for the time span from 2000 to the present.

4
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Figure 6. Trend rates from various starting years to December 2010, for all five adjusted data sets. Error bars are 2-σ .

Figure 7. Influence of exogenous factors on global temperature for GISS (blue) and RSS data (red). (a) MEI; (b) AOD; (c) TSI.

We also tested for changes in the warming rate by
fitting a quadratic function of time to the adjusted data
sets. Only one of the data sets, the UAH series, showed
a statistically significant quadratic term (p-value 0.03). It
indicates acceleration of the warming trend at a rate of
0.006 ◦C/decade/yr. However, we regard this acceleration
with skepticism because it shows in no other data set, not even
the other satellite record.

5.1. Influence of ENSO, volcanoes and solar variation

We show the influence of the various factors on global
temperature for a surface temperature record (GISS) and a
satellite record (RSS) in figure 7, in order to illustrate the
magnitude of their impact and to compare the results from

surface- and a satellite-based data. ENSO has the largest
overall impact, with a total range of variation of 0.39 ◦C
for GISS and 0.64 ◦C for RSS. Volcanic aerosols have the
second-largest influence, with range 0.35 ◦C for GISS and
0.52 ◦C for RSS. Solar variation, as characterized by TSI,
shows the smallest total range of influence, 0.12 ◦C for GISS
and 0.20 ◦C for RSS. Note that these ranges are for the
temperature change induced by these factors, they are not
coefficients of their influence, hence all are in units of degree
celsius.

The variances of the signal components corresponding
to the influence of MEI, AOD and TSI are listed in table 2.
This confirms that the influence of ENSO is greater than
that of volcanic forcing and much greater than that of solar
variation, and that both ENSO and volcanic forcing affect LT

5
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Table 2. Variance attributable to MEI, AOD and TSI in the regression of global temperature for each of the five temperature records, as
well as residual variances and the fraction of variance explained (R2 values) by two models. Total variance is for the raw data, that for
individual factors is the variance of the temperature signal due to those factors, and residual variances and R2 values are for residuals from a
linear fit to the raw data without additional factors, and from the full model (including all three factors and the linear trend).

Total MEI AOD TSI Linear resid. Full resid. Linear R2 Full R2

GISS 0.0454 0.0053 0.0048 0.0008 0.0216 0.0139 0.525 0.693
NCDC 0.0368 0.0044 0.0026 0.0011 0.0143 0.0087 0.610 0.763
CRU 0.0341 0.0050 0.0031 0.0014 0.0134 0.0070 0.608 0.794
RSS 0.0487 0.0156 0.0107 0.0019 0.0296 0.0135 0.391 0.722
UAH 0.0490 0.0166 0.0132 0.0012 0.0320 0.0145 0.348 0.704

Table 3. Trends in ◦C/decade of the signal components due to
MEI, AOD and TSI in the regression of global temperature, for each
of the five temperature records.

MEI AOD TSI

GISS −0.014 0.025 −0.014
NCDC −0.014 0.019 −0.017
CRU −0.015 0.020 −0.019
RSS −0.022 0.038 −0.023
UAH −0.023 0.041 −0.018

temperatures much more strongly than surface temperature.
Also listed are the total variances of the raw data sets, and the
variance of the residuals as well as R2 values (which gives the
fraction of variance explained by the model) both for a simple
linear trend with no other factors, and for the full model. The
simple linear model explains over half the variance in surface
temperature data but less than 40% for LT data. The full model
explains 70%–80% of the variance for all five data sets. Not
only do the included factors improve the fit for all data sets
substantially, for LT data they roughly double the R2 values
over those of a simple linear model.

An interesting result is the time lags found. For volcanic
eruptions the resulting cooling lags by about half a year,
whereas the warming associated with El Niño events lags
the multivariate ENSO index by 2–5 months. For ENSO the
largest lag is found in the lower troposphere, whereas for solar
forcing the lag in the surface data is larger. This is consistent
with ENSO forcing the climate system from below (via ocean
heat release) while solar irradiance forces the system from the
top. The lags found here are consistent with those from Lean
and Rind (2008) for the longer period 1889–2006, namely 6
months for volcanoes, 4 months for ENSO and 1 month for
solar variations.

Finally, we list the linear trend in the signals due
to ENSO, volcanic forcing and solar variation in table 3.
The magnitudes of these trend contributions are quite small
compared to the overall trends. In fact the net trend due to
these three factors is negative for all data sets except UAH, for
which it is zero. Hence these factors have not contributed to an
upward trend in temperature data, rather they have contributed
a very slight downward trend. Except for UAH data, the
trend which is attributable to global warming is therefore very
slightly greater than that which is observed in the unadjusted
data.

Figure 8. Average of all five adjusted data sets.

6. Conclusions

This analysis confirms the strong influence of known factors
on short-term variations in global temperature, including
ENSO, volcanic aerosols and to a lesser degree solar variation.
It also emphasizes that LT temperature is affected by these
factors much more strongly than surface temperature.

Perhaps most important, it enables us to remove an
estimate of their influence, thereby isolating the global
warming signal. The resultant adjusted data show clearly,
both visually and when subjected to statistical analysis, that
the rate of global warming due to other factors (most likely
these are exclusively anthropogenic) has been remarkably
steady during the 32 years from 1979 through 2010. There
is no indication of any slowdown or acceleration of global
warming, beyond the variability induced by these known
natural factors. Because the effects of volcanic eruptions and
of ENSO are very short-term and that of solar variability very
small (figure 7), none of these factors can be expected to exert
a significant influence on the continuation of global warming
over the coming decades. The close agreement between all
five adjusted data sets suggests that it is meaningful to average
them in order to produce a composite record of planetary
warming. Annual averages of the result are shown in figure 8.
This is the true global warming signal.
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Its unabated increase is powerful evidence that we can
expect further temperature increase in the next few decades,
emphasizing the urgency of confronting the human influence
on climate.

Appendix. Methods

Making best use of trend estimates requires also estimating
the probable error associated with those values. This cannot
be done treating the noise as white noise because the
residuals from global temperature time series exhibit strong
autocorrelation, which must be compensated for when
estimating standard errors for the warming rates.

The most common method of compensating for
autocorrelation in trend analysis is to treat the noise as a
first-order autoregressive, or AR(1), process. In such a case
the autocorrelation at a given lag j is

ρj = φ
j, (A.1)

where φ is the autoregression coefficient. It is estimated by
the lag-1 value of the sample autocorrelation function (ACF,
usually according to the Yule–Walker estimate) ρ̂1. Then one
can compute a correction factor, which we can call the number
of data per effective degree of freedom, as

ν =
1+ φ
1− φ

. (A.2)

Finally, the corrected standard error σc of an estimated trend
rate c is the standard error σw one would estimate if the noise
were white noise, multiplied by the square root of the number
of data per effective degree of freedom

σc = σw
√
ν. (A.3)

When the autocorrelation of the noise is positive (as is almost
always the case), the corrected standard error σc is larger than
the white-noise estimate σw, i.e., treating the noise as white
noise underestimates the probable error in the trend rate.

Unfortunately, for global temperature time series such a
procedure still underestimates the probable errors, because
the noise is demonstrably different from AR(1) noise.
This is illustrated in figure A.1, showing the estimated
autocorrelation function of the residuals from a linear
fit to GISS data from 1975 to the present. Clearly the
AR(1) model (shown in red) underestimates the higher-order
autocorrelations, so using that model will underestimate the
probable error in the trend rate.

Instead, we adopt the more conservative model that the
autocorrelation at lag j is still given by exponential decay with
decay constant φ, but the lag-1 value is not necessarily equal
to the exponential decay constant. Therefore the ACF is given
by

ρj =

{
1 j = 0

ρ1φ
j−1 j ≥ 1.

(A.4)

This behavior corresponds to an ARMA(1, 1) process for the
noise.

Figure A.1. Sample autocorrelation of residuals from a linear fit to
raw GISS data, compared to the values for an AR(1) model.

For a generic autocorrelation structure ordinary least
squares regression still gives an unbiased estimate of the
trend rate, but the correction factor for standard errors of the
coefficients is (Lee and Lund 2004)

ν = 1+ 2
∑

j

ρj, (A.5)

where ρj is the autocorrelation at lag j. When the noise is
ARMA(1, 1), equation (A.5) becomes

ν = 1+
2ρ1

1− φ
, (A.6)

and the correction to the standard error of the coefficients is
still given by equation (A.3).

Hence for each data series, we used residuals from the
models covering the satellite era to compute the Yule–Walker
estimates ρ̂1, ρ̂2 of the first two autocorrelations. Then we
estimate the decay rate of autocorrelation as

φ̂ =
ρ̂2

ρ̂1
. (A.7)

Finally, inserting ρ̂1 and φ̂ into equation (A.6) enables us to
estimate the actual standard error of the trend rates from the
regression.
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