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Simple chaotic systems are useful tools for testing methods for use in numerical weather
simulations due to their transparency and computational cheapness. The Lorenz (1996)
system was used here; the full system is defined as “truth”, while a truncated version is
used as a testbed for parametrisation schemes. Several stochastic parametrisation schemes
were investigated, including additive and multiplicative noise. The forecasts were started
from perfect initial conditions, eliminating initial condition uncertainty. The stochastically
generated ensembles were compared to perturbed parameter ensembles and deterministic
schemes.

The stochastic parametrisations showed an improvement in weather and climate fore-
casting skill over deterministic parametrisations. Including a temporal autocorrelation
resulted in a significant improvement over white noise, challenging the standard idea that
a parametrisation should only represent sub-gridscale variability. The skill of the ensemble
at representing model uncertainty was tested; the stochastic ensembles gave better estim-
ates of model uncertainty than the perturbed parameter ensembles. The forecasting skill
of the parametrisations was found to be linked to their ability to reproduce the clima-
tology of the full model. This is important in a seamless prediction system, allowing the
reliability of short term forecasts to provide a quantitative constraint on the accuracy of
climate predictions from the same system.

Keywords: model uncertainty; stochastic parametrisations; reliability; seam-
less prediction; ensemble prediction

1. Introduction

The central aim of any atmospheric parametrisation scheme must be to improve the fore-
casting skill of the atmospheric model in which it is embedded and to represent better
our beliefs about the future state of the atmosphere, be this the weather in five days time
or the climate in 50 years time. One aspect of this goal is the accurate representation
of uncertainty: a forecast should skilfully indicate the confidence the forecaster can have
in his or her prediction. There are two main sources of error in atmospheric modelling;
errors in the initial conditions and errors in the model’s representation of the atmosphere.
The ensemble forecast generated should explore these uncertainties, and a probabilistic
forecast issued to the user [21]. A probabilistic forecast is of great economic value to the
user as it allows reliable assessment of the risks associated with different decisions, which
cannot be achieved using a deterministic forecast [22].

Uncertainties in initial conditions, due to limited spatial and temporal distribution of
atmospheric measurements, are represented by perturbing the initial conditions of different
ensemble members, for example using singular vectors [6], and tracking their subsequent
evolution. Model error arises due to the computational representation of the equations
describing the evolution of the atmosphere. The atmospheric model has a finite resolution,
and sub-grid scale processes must be represented through schemes which often grossly
simplify the physics involved. For each state of the resolved, macroscopic variables there
are many possible states of the unresolved variables, so this parametrisation process is a
significant source of model uncertainty. The large-scale equations must also be discretised
in some way, which is a secondary source of error. If only initial condition uncertainty is
represented, the forecast ensemble is underdispersive, i.e. it does not accurately represent
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the error in the ensemble mean (e.g. Stensrud et al. [33]). The verification frequently falls
outside of the range of the ensemble; model uncertainty must be included for a skilful
forecast.

Accurate representation of model and initial condition uncertainties will ensure that
the resultant ensemble forecast is reliable. This refers to the consistency, when statistically
averaged, of the forecast and measured probabilities of an event [36]. If a forecasting
system is reliable then, from the very definition of reliability, it must have the correct
climatology [5]. This motivates the use of reliability of shorter term forecasts as a test for
climatological prediction skill. Palmer et al. [25] use the reliability of seasonal forecasts
to calibrate climate change projections, particularly concerning precipitation. They argue
that it is a necessary requirement that a climate model gives a reliable weather forecast,
though this requirement is not sufficient as numerical weather prediction (NWP) models
do not include the longer timescale physics of the cryosphere and biosphere which are
nevertheless important for accurate climate prediction.

Several ways of representing model uncertainty have been proposed. Multi-model en-
sembles (MMEs), such as the Coupled Model Intercomparison Project, phase 3 (CMIP3)
[18], allow for a pragmatic representation of model uncertainty. While MMEs have been
shown to perform better than the best single model in the ensemble [34], they are not
able to represent systemic errors which are potentially common to all deterministically
parametrised models, and the superensemble remains underdispersive. Furthermore the
individual models in a MME are not independent, and the effective number of models in
the ensemble is far lower than the total number of models [17, 27]. This lack of diversity
adversely affects how well a MME can represent model uncertainty.

A large source of forecast model error is the assumptions built into the parametrisa-
tion schemes. The model uncertainty from these assumptions can be explored by using
several different parametrisation schemes (multiparametrisation) to generate an ensemble
of forecasts [11], though such approaches likely suffer from systemic deficiencies. Alternat-
ively, the perturbed parameter approach takes uncertain parameters in the parametrisation
schemes and varies their values within their physical range. Perturbing parameters gives
a greater control over the ensemble than the multiparametrisation approach [29], though
this approach also does not explore structural or systemic errors, as a single base model
is used for the experiment.

In this study, stochastic parametrisations are investigated as a way of accurately rep-
resenting model uncertainty. In their seminal paper, Nastrom and Gage [20] show the
presence of a shallow power-law slope in the kinetic energy spectrum in the atmosphere,
with no observed scale separation. This lack of scale separation allows errors in the repres-
entation of unresolved, poorly constrained small scale processes to infect the larger scales
[23]. Therefore, a one-to-one mapping of the large-scale on to the small-scale variables, as
is the case in a deterministic parametrisation, seems unjustified. A stochastic scheme in
which random numbers are included in the computational equations of motion acknow-
ledges this limitation, and an ensemble generated by repeating a stochastic forecast gives
an indication of the uncertainty inherent in the parametrisation process. A stochastic
parametrisation must be viewed as providing possible realisations of the subgrid scale mo-
tion, whereas a deterministic parametrisation represents the average of all the possible
sub-gridscale effects.

There has been significant interest in stochastic parametrisation schemes in recent
years, and they have been shown to perfom well in simple systems such as the Lorenz ’96
System [7, 13, 35]. Coarse graining studies [31] allow for the development of physically mo-
tivated schemes such as the Stochastically Perturbed Parametrisation Tendencies (SPPT)
and Stochastic Kinetic Energy Backscatter (SKEB) schemes operationally in use in the
European Centre for Medium-Range Weather Forecasts (ECMWF) NWP system [26].
Their inclusion has resulted in a reduction of model biases, and a significant improvement
in forecast reliability [2, 3, 26]. A further example of a physically motivated scheme is the
stochastic multicloud model for parametrisation of tropical convection proposed by Frenkel
et al. [8]. The resultant cloud structure and wave features compare favourably with CRM
simulations, especially when compared to the performance of a deterministic parametrisa-
tion. Stochastic schemes have also been found to be beneficial in climate simulation and
analysis [24].
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Figure 1: Schematic of the L96 system (taken from Wilks [35]). Each of the K = 8
large-scale X variables is coupled to J = 32 small-scale Y variables.

The need for stochastic parametrisations has been motivated by considering the re-
quirement that a forecast ensemble should include an estimate of uncertainty due to errors
in the forecast model. This experiment seeks to test the ability of a stochastic paramet-
risation scheme to represent this model uncertainty skilfully. Therefore, perfect initial
conditions are used for all ensemble members, removing initial condition uncertainty. The
only source of uncertainty in the forecast is model error from truncation and imperfect
parametrisation of the unresolved ‘Y ’ variables in the Lorenz ’96 system, and from errors
in the timestepping scheme. The spread in the forecast ensemble is generated purely from
the stochastic parametrisation schemes, so the ability of such a scheme to represent model
uncertainty can be rigorously tested. The ability to distinguish between model and initial
condition uncertainty can only take place in an idealised “toy model” setting. However, in
Wilks [35] and Crommelin and Vanden-Eijnden [7], model uncertainty is not distinguished
from initial condition uncertainty in this way, so the ability of stochastic parametrisa-
tions to represent model uncertainty was not investigated. In Section 2, we describe the
Lorenz ’96 System used in this experiment, and in Section 3 we describe the stochastic
schemes tested. Sections 4, 5 and 6 discuss the effects of stochastic schemes on short term
weather prediction skill, reliability and climatological skill respectively. Section 7 discusses
experiments with perturbed parameter ensembles and Section 8 draws some conclusions.

2. The Lorenz ’96 System

There are many benefits of performing proof of concept experiments using simple sys-
tems before moving to a GCM or NWP model. Simple chaotic systems are transparent
and computationally cheap but are able to mimic certain properties of the atmosphere.
Crucially, they also allow for a robust definition of “truth”, important for development
and testing of parametrisations and verification of forecasts. The Lorenz ’96 system used
here was designed by Lorenz [16] to be a “toy model” of the atmosphere, incorporating the
interaction of variables of different scales. It is therefore particularly suited as a testbed for
new parametrisation methods which must represent this interaction of scales. The second
model proposed in Lorenz [16], henceforth, the L96 system, describes a coupled system of
equations for two types of variables arranged around a latitude circle (Figure 1) [16, 35]:

dXk

dt
= −Xk−1(Xk−2 −Xk+1)−Xk + F − hc

b

kJ∑
j=J(k−1)+1

Yj ; k = 1, ...,K (2.1a)

dYj
dt

= −cbYj+1(Yj+2 − Yj−1)− cYj +
hc

b
Xint[(j−1)/J]+1; j = 1, ..., JK, (2.1b)
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Parameter Symbol Setting

Number of X variables K 8

Number of Y variables per X variable J 32

Coupling Constant h 1

Forcing Term F 20

Spatial Scale Ratio b 10

Timescale Ratio c 4 or 10

Table 1: Parameter settings used for the L96 system in this experiment

where the variables have cyclic boundary conditions; Xk+K = Xk and Yj+JK = Yj .
The Xk variables are large amplitude, low frequency variables, each of which is coupled to
many small amplitude, high frequency Yj variables. Lorenz suggested that the Yj represent
convective events, while the Xk could represent, for example, larger scale synoptic events.
The interpretation of the other parameters, and the values in this study, are shown in
Table 1. The scaling of the variables is such that one model time unit is approximately
equal to five atmospheric days, deduced by comparing the error doubling time of the model
to that observed in the atmosphere [16].

3. Description of the Experiment

A series of experiments was carried out using the L96 system. Each of the K = 8 low fre-
quency, large amplitude X variables is coupled to J = 32 high frequency, small amplitude
Y variables. The X variables are considered resolved and the Y variables unresolved, so
must therefore be parametrised in a truncated model. The effects of different stochastic
parametrisations were then investigated by comparing the truncated forecast model to the
“truth”, defined by running the full set of coupled equations.

Two different values of the timescale ratio, c = 4 and c = 10, were used in this
experiment. The c = 10 case was also considered by Wilks [35]. This case has a large
timescale separation so can be considered “easy” to parametrise. However, it has been
shown that there is no such timescale separation in the atmosphere [20], so a second
parameter setting of c = 4 was chosen, where parametrisation of the sub-grid is more
difficult, but which closer represents the real atmosphere.

(a) “Truth” model

The full set of equations was run and the resultant time series defined as “truth”.
The equations were integrated using an adaptive fourth order Runge-Kutta timestepping
scheme, with a maximum timestep of 0.001 model time units (MTU). Having removed the
transients, the 300 initial conditions on the attractor were selected at intervals of 10 MTU,
corresponding to 50 “atmospheric days”. This interval was selected to ensure adjacent
initial conditions are uncorrelated — the temporal autocorrelation of the X variables is
close to zero after 10 MTU. A truth run was carried out from each of these 300 initial
conditions.

(b) Forecast model

A forecast model was constructed by assuming that only the X variables are resolved,
and parametrising the effect of the unresolved sub-gridscale Y variables in terms of the
resolved X variables:

dX∗
k

dt
= −X∗

k−1(X∗
k−2 −X∗

k+1)−X∗
k + F − Up(X∗

k); k = 1, ...,K, (3.1)

where X∗
k(t) is the forecast value of Xk(t) and Up is the parametrised subgrid tend-

ency. Equation (3.1) was integrated using a piecewise deterministic, adaptive second order
Runge-Kutta scheme, in which the stochastic noise term is held constant over the timestep.
Such a stochastic Runge-Kutta scheme has been shown to converge to the true Stratonovich
forward integration scheme, as long as the parameters in such a scheme are used in the
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Figure 2: Measured subgrid tendency, U , as a function of the gridscale X variables for the
(a) c = 4 and (b) c = 10 cases. For each case, the data was generated from a long truth
integration of 3000 MTU ≈ 40 “atmospheric years”, sampled at intervals of 0.125 MTU.
The solid line on each graph is a cubic fit to the truth data, representing a deterministic
parametrisation of the tendencies. There is considerable variability in the tendencies not
captured by such a deterministic scheme.

same way they are estimated [9, 10]. This was verified for the different stochastic paramet-
risations tested. The parametrisations Up(X) approximate the true sub-grid tendencies,

U(X,Y ) =
hc

b

kJ∑
j=J(k−1)+1

Yj , (3.2)

which are estimated from the truth time series as

U(t) = [−Xk−1(Xk−2 −Xk+1)−Xk + F ]−
(
Xk(t+ ∆t)−Xk(t)

∆t

)
. (3.3)

The forecast timestep was set to ∆t = 0.005. The L96 system exhibits cyclic symmetry,
so the same parametrisation is used for all Xk.

The true sub-grid tendency, U , was plotted as a function of the large-scale X variables
for both c = 4 and c = 10 (Figure 2). This was modelled in terms of a deterministic
parametrisation, Udet, where

U(X) = Udet(X) + r(t), (3.4)

for

Udet(X) = b0 + b1X + b2X
2 + b3X

3, (3.5)

and the parameter values (b0, b1, b2, b3) were determined by a least squares fit to the
(X,U) truth data. However, Figure 2 shows significant scatter about the deterministic
parametrisation — the residuals r(t) are non-zero. This variability can be taken into
account by incorporating a stochastic component, e(t), into the parametrised tendency,
Up.

A number of different stochastic parametrisations were considered. These use differ-
ent statistical models to represent the subgrid-scale variability due to the truncated Y
variables. The different noise models will be described below.

(i) Additive Noise (A)

This work builds on Wilks [35], where the effects of white and red additive noise were
considered on the skill of the forecast model. The parametrised tendency is modelled as
the deterministic tendency and an additive noise term, e(t):

Up = Udet + e(t) (3.6)
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Figure 3: Temporal and spatial autocorrelation for the residuals, r(t), measured from the
truth data. Figures (a) and (b) show the measured temporal autocorrelation function for c
= 4 and c = 10 respectively as grey triangles. Also shown is the temporal autocorrelation
function for an AR(1) process with different values of the φ-parameter (grey dot–dash, dash,
solid and dotted lines). The fitted AR(1) process is indicated by the darker grey line in each
case. Figure (c) shows the measured spatial correlation for the residuals measured from the
truth data. The spatial correlation is close to zero for lag 6= 0.

The stochastic term, e(t), is designed to represent the residuals, r(t). The temporal and
spatial autocorrelation functions for the residuals are shown in Figure 3. The temporal
autocorrelation is significant but the spatial correlation is small. Therefore, the temporal
characteristics of the residuals are included in the parametrisation by modelling the e(t) as
a first order autoregressive (AR(1)) process. The stochastic tendencies for each of the X
variables are assumed to be mutually independent. It is expected that in more complicated
systems, including the effects of both spatial and temporal correlations will be important to
accurately characterise the sub-gridscale variability. A second order autoregressive process
was also considered, but fitting the increased number of parameters proved difficult, and
the resultant improvement over AR(1) was slight, so it will not be discussed further here.

A zero mean AR(1) process can be written as [36]:

e(t) = φe(t−∆t) + σe(1− φ2)1/2z(t), (3.7)

where φ is the first autoregressive parameter (lag-1 autocorrelation), σ2
e is the variance of

the stochastic tendency and z(t) is unit variance white noise: z(t) ∼ N (0, 1). φ and σe can
be fitted from the truth time series.

(ii) State Dependent Noise (SD)

A second type of noise was considered where the standard deviation of additive noise
is dependent on the value of the X variable. This will be called state dependent noise. It
can be motivated in the L96 system by studying Figure 2; the degree of scatter about the
cubic fit is greater for large magnitude X values:

Up = Udet + e(t), (3.8)

where the state dependent standard deviation of e(t) is modelled as

σe = σ1|X(t)|+ σ0. (3.9)

As Figure 3 shows a large temporal autocorrelation, it is unlikely that white state depend-
ent noise will adequately model the residuals. Instead, e(t) will be modelled as an AR(1)
process:

e(t) =
σe(t)

σe(t−∆t)
φ e(t−∆t) + σe(t)(1− φ2)1/2z(t), (3.10)

where the time dependency of the standard deviation and the requirement that e(t) must
be a stationary process have motivated the functional form.

The parameters σ1 and σ0 can be estimated by binning the residuals according to the
magnitude of X and calculating the standard deviation in each bin. The lag-1 autocorrel-
ation was estimated from the residual time series.
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(iii) Multiplicative Noise (M)

Multiplicative noise has been successfully implemented in the ECMWF NWP model
using the SPPT scheme, and has been shown to improve the skill of the forecasting system.
Therefore it is of interest whether a parametrisation scheme involving multiplicative noise
could give significant improvements over additive stochastic schemes in the L96 system.

The parametrisation proposed is

Up = (1 + e(t))Udet, (3.11)

where e(t) is modelled as an AR(1) process, given by Equation 3.7.
The parameters in this model can be estimated by forming a time series of the truth

“residual ratio”, Rk, we wish to represent:

Rk + 1 = U /Udet. (3.12)

However whenever Udet approaches zero the residual ratio tends to infinity. Therefore, the
time series was first filtered such that only sections away from Udet = 0 were considered,
and the temporal autocorrelation and standard deviation estimated from these sections.

For multiplicative noise, it is assumed that the standard deviation of the true tendency
is proportional to the parametrised tendency, such that when the parametrised tendency is
zero the uncertainty in the tendency is zero. Figure 2 shows that multiplicative noise does
not appear to be a good model for the uncertainty in the L96 system as the uncertainty
in the true tendency is large even when Udet is zero. Nevertheless, it was investigated.

(iv) Multiplicative and Additive Noise (MA)

Figure 2 motivates a final stochastic parametrisation scheme for testing in the L96
system, which will include both multiplicative and additive noise terms. This represents
the uncertainty in the parametrised tendency even when the deterministic tendency is
zero. This type of uncertainty has been observed in coarse-graining studies. For example,
Shutts and Palmer [31] observed that the standard deviation of the true heating in a
coarse gridbox does not go to zero when Q̄, the parametrised heating, is zero. This type of
stochastic parametrisation can also be motivated by considering errors in the timestepping
scheme, which will contribute to errors in the total tendency even if the sub-gridscale
tendency is zero.

When formulating this parametrisation, the following points were considered:

1. In a toy model setting, random number generation is computationally cheap. How-
ever in a weather or climate prediction model, generation of spatially and temporally
correlated fields of random numbers is comparatively expensive, and two separate
generators must be used if two such fields are required. It is therefore desirable to use
only one random number per timestep so that the parametrisation could be further
developed for use in an atmospheric model.

2. The fewer parameters there are to fit, the less complicated the methodology required
to fit them, the easier it would be to apply this method to a more complex system
such as an atmospheric model. This also avoids overfitting.

We consider the most general form of additive and multiplicative noise:

Up = (1 + εm)Udet + εa = Udet + (εmUdet + εa). (3.13)

This can be written as pure additive noise:

Up = Udet + e(t), (3.14)

where
e(t) = εm(t)Udet + εa(t). (3.15)

Following point (1) above, we assume εm(t) and εa(t) are the same random number,
appropriately scaled:

e(t) = ε(t) (σmUdet + σa) . (3.16)
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In the current form, Equation (3.16) is not symmetric about the origin with respect to
Udet. The standard deviation of the stochastic tendency is zero when σmUdet = −σa.
Therefore, Udet in the above equation will be replaced with |Udet|:

e(t) = ε(t) (σm|Udet|+ σa) , (3.17)

where
ε(t) = ε(t−∆t)φ+ (1− φ2)1/2z(t). (3.18)

This does not change the nature of the multiplicative noise as ε(t) is zero mean, but it
forces the additive part of the noise to act always in the same direction as the multiplicative.
ε(t) is modelled as a AR(1) process of unit variance. The parameters will be fitted from
the residual time series.

The different stochastic parametrisations used in this experiment are summarised in
Table 2, together with the parameters measured from the truth time series.

4. Weather Forecasting Skill

The stochastic parametrisation schemes were first tested on their ability to predict the
“weather” of the L96 system, and represent the uncertainty in their predictions correctly.
An ensemble of 40 members was generated for each of the 300 initial conditions on the
attractor. Each ensemble member is initialised from the perfect initial conditions defined
by the “truth” time series.

Each stochastic parametrisation involves two or more tunable parameters which may
be estimated from the “truth” timeseries. Many parameter settings were considered, and
the skill of the parametrisation evaluated for each setting using scalar skill scores. The
Ranked Probability Score (RPS) evaluates a multi-category forecast. In this experiment,
ten categories were defined as the ten deciles of the climatological distribution. The Ranked
Probability Skill Score (RPSS) was also calculated with respect to the climatology [36]. The
Ignorance score (IGN) evaluates a continuous forecast. Roulston and Smith [30] suggest
defining N + 1 categories for an ensemble forecast of N members, and approximating
the probability density function (PDF) as a uniform distribution between consecutive
ensemble members. This approximation is used here. The Ignorance Skill Score (IGNSS)
was calculated with respect to climatology. The Brier Score (BS) is used when considering
a dichotomous event [4, 36]. The event was defined here as “the X variable is in the upper
tercile of the climatological distribution”. The Brier Score is mathematically related to the
RPS [36], and gave very similar results to the RPS, so is not shown here for brevity. The
forecast skill scores are calculated at a lead time of 0.6 units, equivalent to 3 atmospheric
days, for each case.

Figure 4 shows the calculated skill scores for a forecast model with an additive AR(1)
stochastic parametrisation, for both the c = 4 and c = 10 cases. The shape of peak in
forecasting skill is qualitatively similar in each case, but is lower for the c = 4 case. The
closer timescale separation of the c = 4 case is harder to parametrise, so a lower skill is to
be expected.

IGNSS shows a different behaviour to RPSS. Ignorance heavily penalises an underd-
ispersive ensemble, but does not heavily penalise an overdispersive ensemble. This asym-
metry is observed in the contour plot for IGNSS — the peak is shifted upwards compared to
the peak for RPSS, and deterministic parametrisations have negative skill (are worse than
climatology). The very large magnitude and high autocorrelation noise parametrisations
are not penalised, but score highly, despite being overdispersive.

The RPSS may be decomposed explicitly into reliability, resolution and uncertainty
components [36]. This decomposition demonstrates that the deterministic and low amp-
litude noise parametrisations score highly on their resolution, but poorly for their reliabil-
ity, and the converse is true for the large amplitude, highly autocorrelated noise paramet-
risations. The peak in skill according to the RPSS corresponds to parametrisations which
score reasonably well on both accounts.

A number of important parameter settings can be identified on these plots. The first
corresponds to the deterministic parametrisation, which occurs on the x-axis where the
standard deviation of the noise is zero. The second corresponds to white noise, which
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(a) RPSS, c = 4
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(b) IGNSS, c = 4
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Figure 4: Weather Skill Scores (RPSS and IGNSS) for a forecast model with an additive
AR(1) stochastic parametrisation for (a) and (b) the c = 4 case, and (c) and (d) the c = 10
case. The skill scores were evaluated as a function of the tuneable parameters in the model;
the lag-1 autocorrelation, φ, and the standard deviation of the noise, σ. The black crosses
indicate the measured parameter values. All skill scores are calculated at a lead time of 0.6
model time units (3 atmospheric days).
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(b) M, c = 4
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(c) AR1 MA, c = 4
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Figure 5: Comparing the RPSS for the c = 4 case for the different stochastic paramet-
risations. The c = 10 results are qualitatively similar and are not shown here. These figures
are included in the online supplementary material (Supplementary Figure 1). (a) The skill
of the state dependant (SD) additive parametrisation is shown for different values of the
noise standard deviations, σ1 and σ0, with the lag-1 autocorrelation set to φ = φmeas. (b)
The skill of the pure multiplicative (M) noise is shown for different values of the lag-1 auto-
correlation, φ, and magnitude of the noise, σ. The parametrisation scheme was found to be
numerically unstable for high σ > 2σmeas. (c) The skill of the additive and multiplicative
(MA) parametrisation is shown for different values of the noise standard deviations, σm and
σa, with the lag-1 autocorrelation set to φ = φmeas. In all cases, the measured parameters
are indicated by the black cross. The skill scores were evaluated at a lead time of 0.6 model
time units (3 atmospheric days).
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Figure 6: The skill of the different parametrisations according to (a) RPSS and (b) IGNSS
are compared for the c = 10 and c = 4 cases. The parameters in each parametrisation have
been estimated from the truth time series. In each case, “White” indicates that the measured
standard deviations have been used, but the autocorrelation parameters set to zero.

occurs on the y-axis where the autocorrelation parameter is set to zero. In particular,
(φ, σ/σmeas) = (0, 1) corresponds to additive white noise with a magnitude fitted to the
truth time series. The third setting is the measured parameters, marked by a black cross.
Comparing the skill of these three cases shows an improvement over the deterministic
scheme as first white noise, then red noise is included in the parametrisation.

The RPSS calculated for the other stochastic parametrisations for the c = 4 case is
shown in Figures 5. The contour plots for IGNSS are comparable, so are not shown for
brevity. The forecasts are more skilful for the c = 10 case, but qualitatively similar. They
have been included in the supplementary online material (Supplementary Figure 1). For
all cases considered, including a stochastic term in the parametrisation scheme results in
an improvement in the skill of the forecast over the deterministic scheme. This result is
robust to error in the measurement of the parameters — a range of parameters in each
forecast model gave good skill scores. This is encouraging, as it indicates that stochastic
parametrisations could be useful in modelling the real atmosphere, where temporally and
spatially limited, noisy data restrict how accurately these parameters may be estimated.

The results are summarised in Figure 6. For each parametrisation, the value for the
measured parameters is shown when both no temporal autocorrelation (“white” noise)
and the measured temporal autocorrelation characteristics are used. The significance of the
difference between pairs of parametrisations was estimated using a Monte-Carlo technique.
Please see the supplementary online material for more details, but for example, there is
no significant difference between the RPS for AR(1) multiplicative and additive noise and
for AR(1) state dependent noise for the c = 10 case, but AR(1) multiplicative noise gave
a significant improvement over both of these.

The stochastic parametrisations are significantly more skilful than the deterministic
parametrisation in both the c = 4 and c = 10 cases. For the c = 4 case, the more com-
plicated parametrisations show a significant improvement over simple additive, especially
the multiplicative noise. For the closer timescale separation, the more accurate the rep-
resentation of the sub-gridscale forcing, the higher the forecast skill. For the c = 10 case,
the large timescale separation allows the deterministic parametrisation to have reasonable
forecasting skill, and a simple representation of sub-grid variability is sufficient to represent
the uncertainty in the forecast model; the more complicated stochastic parametrisations
show little improvement over simple additive AR(1) noise.

Traditional deterministic parametrisation schemes are a function of the grid-scale vari-
ables at the current time step only. If a stochastic parametrisation also needs only to
represent the sub grid- and time-scale variability, the white noise schemes would be ad-
equate. However, for both timescale separations we observe a significant improvement in
the skill of stochastic parametrisations which include a temporal autocorrelation over those
which use white noise. This challenges the standard idea that a parametrisation should
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Figure 7: (a) RMS Error-Spread Diagnostic for the c = 4 case. The forecast-verification
pairs are ordered according to their forecast variance, and divided into 15 equally populated
bins. The mean square spread and mean square error are evaluated for each bin, before the
square root is taken. Equation 5.1 shows the points will lie on the diagonal if the ensemble
is statistically consistent. The diagnostic is considered for a deterministic forecast model,
the parametrisation scheme using additive white noise, and finally including the measured
temporal autocorrelation in the stochastic term. (b) REL, the reliability component of the
Brier Score, is calculated for the different parametrisations and compared for the c = 4
and c = 10 cases. The smaller the REL, the more reliable the forecast. The parameters in
each parametrisation have been estimated from the truth time series. In each case, “White”
indicates that the measured standard deviations have been used, but the autocorrelation
parameters set to zero.

only represent sub-gridscale and sub-timestep variability: including temporal autocorrel-
ation accounts for the effects of the sub-gridscale at time scales greater than the model
timestep. In the L96 system, the spatial correlations are low. However in an atmospheric
situation, it is likely that spatial correlations will be significant, and a stochastic para-
metrisation must account for the effects of the sub-grid at scales larger than the spatial
discretisation scale.

5. Representation of Model Uncertainty

The full forecast PDF represents our uncertainty about the future state of the system.
Ideally, the ensemble forecast should be a random sample from that PDF. The consistency
condition is that the verification also behaves like a sample from that PDF [1].

In order to meet the consistency condition, the ensemble must have the correct second
moment. If it is under-dispersive, the verification will frequently fall as an outlier. Con-
versely, if the ensemble is over-dispersive the verification may fall too often towards the
centre of the distribution. The reliability of an ensemble forecast can be tested through
the spread-error relationship [14, 15]. The expected squared error of the ensemble mean
can be related to the expected ensemble variance by assuming the ensemble members and
the truth are independently identically distributed random variables with variance σ2.
Assuming the ensemble is unbiased, this gives the following requirement for a statistically
consistent ensemble:

M

M − 1
estimate ensemble variance =

M

M + 1
squared ensemble mean error, (5.1)

where the variance and mean error have been estimated by averaging over many forecast-
verification pairs. For large ensemble size, M ∼ 40 , we can consider the correction factor
to be close to 1.
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Evaluating the average ensemble error as a function of forecast ensemble spread is a
useful measure of how well the forecast model represents uncertainty, and is tested through
diagnostic plots of binned root mean square (RMS) Spread against the average RMS
Error in each bin. Figure 7(a) shows this diagnostic for a selection of the parametrisation
schemes tested for the c = 4 case. For a well calibrated ensemble, the points should
lie on the diagonal. A clear improvement over the deterministic scheme is seen as first
white, then red additive noise is included in the parametrisation scheme. Visual forecast
verification measures are limited when comparing many different models as they do not
give an unambiguous ranking of the performance of these models. Therefore, we also
consider the Reliability component of the Brier Score [19], REL, which is a scalar scoring
rule testing how reliable an ensemble forecast is when predicting an event. We define the
event to be “in the upper tercile of the climatological distribution”. The smaller the REL,
the closer the forecast probability is to the average observed frequency, the more reliable
the forecast.

The results are summarised in Figure 7(b). The REL score indicates the different AR(1)
noise terms all perform similarly. A significant improvement is observed when temporal
autocorrelation is included in the parametrisation, particularly for the c = 4 case.

6. Climatological Skill and Seamless Prediction

The climatology of the L96 system is defined to be the PDF of the X variables, averaged
over a long run (10,000 model time units ∼ 140 “atmospheric years”), and the forecast
climatology is defined in an analogous way. The skill at predicting the climatology can
then be quantified by measuring the difference between these two PDFs, which may be
evaluated in several ways. The Kolmogorov-Smirnov (KS) statistic, D, has been used in
this context in several other studies [13, 35], where

D = max
Xk

|P (Xk)−Q(Xk)| . (6.1)

Here P is the forecast cumulative PDF, and Q is the verification cumulative PDF. A
second measure, the Hellinger Distance, H, was also calculated for each forecast model:

H2(p, q) =
1

2

∫ (√
p(x)−

√
q(x)

)2
dx, (6.2)

where p(x) is the forecast PDF, and q(x) is the verification PDF [28]. Similarly, the
Kullback-Leibler (KL) divergence, is defined as

KL(p, q) =

∫
p(x)ln

(
p(x)

q(x)

)
dx, (6.3)

motivated by information theory [12]. For all these measures, the smaller the measure, the
better the match between forecast and verification climatologies.

The Hellinger Distance was found to be a much smoother measure of climatological skill
than the KS statistic as it integrates over the whole PDF. Therefore, the KS statistic has
not been considered further here. Figure 8 shows that the Hellinger distance and Kullback-
Leibler divergence give very similar results, so for these reasons only the Hellinger Distance
will be considered. Pollard [28] shows that the two measures are linked, so this similarity
is not suprising.

The Hellinger Distance is evaluated for the different parametrisations for the two cases,
c = 4 and c = 10. Figure 9 shows the results for c = 4 when the tuneable parameters were
varied as for the weather skill scores. Qualitatively, the shape of the plots is similar to
those for the weather skill scores. If a parametrisation performs well in forecasting mode,
it performs well at reproducing the climate. The peak is shifted up and to the right
compared to the RPSS, but is in a similar position to IGNSS and REL. The climatological
skill for the different parametrisations is summarised in Figure 10. As for the weather
forecasting skill, a significant improvement in the climatological skill is observed when
temporal autocorrelation is included in the parametrisations.

The climatological skill, as measured by the Hellinger distance, can be compared to
the weather skill scores using scatter diagrams (Figure 11). This is of interest, as the
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(c) Hellinger Distance, c = 10
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(a) Hellinger Distance, c = 4
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Figure 8: Comparing the Hellinger distance and the Kullback-Leibler divergence as meas-
ures of climatological skill. The measures are shown for the additive AR(1) noise paramet-
risation, as a function of the tuneable parameters, for both (a) and (b) the c = 4 case, and
(c) and (d) the c = 10 case. The crosses indicate the measured parameters.
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Figure 9: The climatological skill of different stochastic parametrisations for the c = 4
case, as a function of the tuneable parameters in each parametrisation. The crosses indicate
the measured parameters in each case. The Hellinger distance was calculated between the
truth and forecast probability density functions (PDFs) of the X variables. The smaller the
Hellinger distance, the better the forecast PDF. Please see the online Supplementary Figure
2 for the c = 10 case.

seamless prediction paradigm suggests that climate models could be verified by evaluating
the model in weather forecasting mode. Figures 11(a) and 11(d) show the relationship
between RPSS and the Hellinger distance. For the c = 10 case, there appears to be strong
negative correlation between the two. However, the peak in RPSS is offset slightly from
the minimum in Hellinger Distance giving two branches in the scatter plot. The c = 4
case can be interpreted as being positioned at the joining point of the two branches, and
shows how using the RPSS as a method to verify a model’s climatological skill could be
misleading.

Figures 11(b) and 11(e) compare Ignorance with the Hellinger Distance. The upper
branch in (e) corresponds to the large magnitude high temporal autocorrelation para-
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Figure 10: The Hellinger Distance for the different parametrisations is compared for the
c = 4 and c = 10 cases. The smaller the Hellinger Distance, the better the climatological
“skill”. The parameters in each parametrisation have been estimated from the truth time
series. In each case, “White” indicates that the measured standard deviations have been
used, but the autocorrelation parameters set to zero.
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Figure 11: Scores (RPSS, IGNSS, REL) calculated when the forecast model is in weather
mode are compared to the climatological skill of the forecast model, as measured by the
Hellinger Distance. Figures (a)–(c) are for the c = 4 case, and Figures (d)–(f) are for the c =
10 case. The greater the forecast skill score (RPSS, IGNSS), the better the forecast. The lower
the reliability score (REL), the more reliable the forecast. The lower the Hellinger Distance,
the closer the match between the forecast climatology and the true climatology of the system.
The symbols represent the different parametrisations - the legend below corresponds to all
figures.

metrisations which Ignorance scores highly, but which have poor climatological skill. This
makes Ignorance unsuitable as an evaluation method for use in seamless prediction.

Figures 11(c) and 11(f) show the results for the Reliability component of the Brier
Score. There is a strong correlation between REL and the Hellinger Distance, indicating
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Figure 12: The ensemble of deterministic parametrisations used to represent model un-
certainty in the perturbed parameter ensemble. The degree to which the parameters are
perturbed has been estimated from the truth timeseries in each case (S = 1).

c = 4 c = 10

bmeas
0 -0.198 0.341

σ(bsamp
0 ) 0.170 0.146

bmeas
1 0.575 1.30

σ(bsamp
1 ) 0.0464 0.0381

bmeas
2 -0.00550 -0.136

σ(bsamp
2 ) 0.00489 0.00901

bmeas
3 -0.000223 -0.00235

σ(bsamp
3 ) 0.000379 0.000650

Table 3: Measured parameters defining the cubic polynomial, (bmeas
0 , bmeas

1 , bmeas
2 , bmeas

3 ),
and the variability of these parameters, σ(bsamp

i ), calculated by sampling from the truth
time series, for the c = 4 and c = 10 cases.

this is a suitable score for use in seamless prediction. It is not surprising that the REL is well
suited for this task, as it is particularly sensitive to the reliability of an ensemble, which is
the characteristic of a forecast important for climate prediction [25]. The other weather skill
scores studied put too much weight on resolution to be used for this purpose. Additionally,
Figure 11(c) indicates that reliability in weather forecasting mode is a necessary but not a
sufficient requirement of a good climatological forecast, as was suggested by Palmer et al.
[25].

7. Perturbed Parameter Ensembles in the Lorenz ’96 System

It is of interest to determine whether a perturbed parameter ensemble can also provide
a reliable measure of model uncertainty in the Lorenz ’96 system. The four measured
parameters (bmeas0 , bmeas1 , bmeas2 , bmeas3 ) defining the cubic polynomial will be perturbed to
generate a 40 member ensemble. The skill of this representation of model uncertainty will
be evaluated as for the stochastic parametrisations.

Following Stainforth et al. [32], each of the four parameters will be set to one of three
values: low (L), medium (M) or high (H). The degree to which the parameters should be
varied was estimated from the truth time series. The measured U(X) was split into sections
3 MTU long, and a cubic polynomial fitted to each section. The measured variability in
each of the parameters was then calculated as the standard deviation of the parameters
fitted to each section σ(bsampi ). The measured standard deviations are shown in Table 3.
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Figure 13: Weather forecasting skill scores for the perturbed parameter model as a function
of the scale factor, S. The skill scores were calulated at a lead time of 0.6 model time units
in each case.

The low, medium and high values of the parameters are given by:

L = bmeasi − Sσ(bsampi )

M = bmeasi

H = bmeasi + Sσ(bsampi ), (7.1)

where the scale factor, S, can be varied to test the sensitivity of the scheme. There are
34 = 81 possible permutations of the parameter settings, from which a subset of 40
permutations was selected to sample the uncertainty. This allows for a fair comparison to
be made with the stochastic parametrisations, which also use a 40 member ensemble.

The same “truth” model will be used as for the stochastic parametrisations, and the
forecast model will be constructed in an analogous way: only the X variables are assumed
resolved, and the effects of the unresolved sub-gridscale Y variables are represented by an
ensemble of deterministic parametrisations:

Upp(Xk) = bp0 + bp1Xk + bp2X
2
k + bp3X

3
k , (7.2)

where the values of the perturbed parameters, bp, vary between ensemble members. The
scale factor, S, in Equation (7.1) will be varied to investigate the effect on the skill of
the forecast. The ensemble of deterministic parametrisations is shown in Figure 12 where
the degree of parameter perturbation has been measured from the truth timeseries (i.e.
S = 1). The truncated model will be integrated using an adaptive second order Runge-
Kutta scheme.

(a) Weather Prediction Skill

The skill of the ensemble forecast is evaluated using the RPSS and IGNSS at a lead
time of 0.6 model time units for both the c = 4 and c = 10 cases. The results are shown
in Figure 13. The measured parameter perturbations are indicated with a black cross in
each case.

Both RPSS and IGNSS indicate the measured perturbed parameter ensemble is sig-
nificantly less skilful than the stochastic ensemble for both the c = 4 and c = 10 case.
Figures 13(c) and (f) show the reliability component of the Brier Score calculated for the
perturbed parameter ensembles. Comparing these figures with Figure 7(b), REL for the
perturbed parameter schemes is greater, indicating that the perturbed parameter ensemble
forecasts are less reliable than the stochastic parametrisation forecasts, so the ensemble is
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Figure 14: RMS Spread vs. RMS Error plots for the perturbed parameter en-
semble as a function of the scale factor, S. The separate figures correspond to
S = [0.0, 0.4, 0.8, 1.2, 1.6, 2.0].

a poorer representation of model uncertainty. The significance of the difference between
skill scores for the the measured stochastic parametrisation schemes and the perturbed
parameter schemes with the measured perturbations (S = 1) are shown in the significance
tables in the online material.

The reliability of the forecast ensemble is also considered using the RMS spread–
error diagnostic as a function of the scale factor in Figure 14. For small-scale factors,
the ensemble is systematically underdispersive for both the c = 4 and c = 10 cases. For
larger scale factors for the c = 10 case, the ensemble is systematically overdispersive for
large errors, and underdispersive for small errors. Comparing Figure 14 with Figure 7(a)
shows that none of the perturbed parameter ensembles are as reliable as the AR1 additive
stochastic parametrisation, reflected in the poorer REL score for the perturbed parameter
case.

(b) Climatological Skill

The climatology of the perturbed parameter ensemble must include contributions from
each of the 40 ensemble members. Therefore, the climatology is defined as the PDF of the
X variables, averaged over the same total number of model time units as the stochastic
parametrisations (10,000); each of the 40 ensemble members is integrated for 250 model
time units. The Hellinger Distance between the truth and forecast climatologies can then be
calculated as a function of the scale factor (Figure 15). The climatology of the measured
perturbed parameter ensemble is worse than the measured parameter stochastic para-
metrisations. This is as predicted by the “seamless prediction” paradigm; the perturbed
parameter ensembles are less reliable than the stochastic parametrisations, and so predict
a less accurate climatology.

8. Conclusions

Several different stochastic parametrisation schemes were investigated using the Lorenz ’96
system. All showed an improvement in weather and climate forecasting skill over determ-
inistic parametrisations. This result is robust to error in measurement of the parameters
— scanning over parameter space indicated a wide range of parameter settings gave good
skill scores.

Stochastic parametrisations have been shown to represent the uncertainty in a forecast
due to model deficiencies accurately. This increase in forecast reliability is reflected by the
increase in the weather prediction skill and improved climatology of the forecast model.
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Figure 15: The Hellinger Distance between the truth and forecast climatologies of the
perturbed parameter model as a function of the scale factor, s. The smaller the Hellinger
Distance, the better the predicted climatology. The S > 2.4 and S > 1.2 forecast models for
the c = 4 and c = 10 cases respectively are numerically unstable over long integrations, so a
climatology could not be calculated.

A significant improvement in the skill of the forecast models was observed when the
stochastic parametrisations included temporal autocorrelation in the noise term. This
challenges the notion that a parametrisation scheme should only represent sub-gridscale
(both temporal and spatial) variability. The coupling of scales in a complex system means
a successful parametrisation must represent the effects of the sub-grid acting on spatial
and time scales greater than the truncation level.

The correlation between the performance of the forecast model in weather prediction
mode, and its ability to reproduce the climatology of the Lorenz ’96 system provides
support for the “Seamless Prediction” paradigm. This provides a method of verifying
climate predictions: the climate model can be run in weather forecasting mode, and its
short term predictive skill analysed.

Stochastic representations of model uncertainty are shown to outperform perturbed
parameter ensembles in the L96 system. They have higher short term forecasting skill and
are more reliable than perturbed parameter ensembles. They also predict the climatology
of the L96 system better.

The Lorenz ’96 system is an excellent tool for testing developments in stochastic para-
metrisations. These ideas can now be applied to numerical weather prediction models and
tested on the atmosphere.
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